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Abstract

We relate the structure of the Bloch–Kato groups associated with
a de Rham Galois representation over a perfectoid field to the Galois
theory of the ring 𝐁+

dR of 𝑝-adic periods. As an application, we answer
the question raised by Coates and Greenberg andmotivated by Iwasawa
theory to compute the Bloch–Kato groups over perfectoid fields in new
cases, generalising results of Coates and Greenberg and the author. Our
method relies on the classification of vector bundles over the Fargues–
Fontaine curve.
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1 Introduction
The present article is concerned with the question raised by Coates and
Greenberg [8, p. 131] and motivated by Iwasawa theory to compute the
Bloch–Kato groups associated with a de Rham Galois representation over a
perfectoid field. The purpose of the present article is to answer Coates and
Greenberg’s question in new cases, generalising the results and the method
of the article [29].

1.1 Motivation
Let 𝑝 be a prime number. Let �̅�𝑝 be an algebraic closure of the field 𝐐𝑝
of 𝑝-adic numbers. Let 𝐾 be a finite extension of 𝐐𝑝 contained in �̅�𝑝. We
denote by𝐺𝐾 = Gal(�̅�𝑝/𝐾) the absolute Galois group of 𝐾. Let 𝑉 be a 𝑝-adic
representation of 𝐺𝐾, that is, a finite dimensional 𝐐𝑝-vector space equipped
with a continuous and 𝐐𝑝-linear action of 𝐺𝐾, and let 𝑇 be a 𝐙𝑝-lattice in 𝑉
stable under the action of 𝐺𝐾.

Bloch and Kato [3] have defined subgroups in Galois cohomology using
𝑝-adic Hodge theory (see §6.1)

H1
𝑒(𝐾, 𝑉/𝑇) ⊆ H1

𝑓(𝐾, 𝑉/𝑇) ⊆ H1
𝑔(𝐾, 𝑉/𝑇) ⊆ H1(𝐾, 𝑉/𝑇),

which are involved in their conjecture on the special values of 𝐿-functions
of motives [15].
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Let 𝐿 be an algebraic extension of 𝐾 contained in �̅�𝑝. For each ∗ ∈
{𝑒, 𝑓, 𝑔}, we consider the group

H1
∗(𝐿, 𝑉/𝑇) = lim−−→

res,𝐾′
H1
∗(𝐾′, 𝑉/𝑇),

where 𝐾′ runs over all the finite extensions of 𝐾 contained in 𝐿, and the
transition morphisms are the restriction maps. The Bloch–Kato subgroups
thus defined

H1
𝑒(𝐿, 𝑉/𝑇) ⊆ H1

𝑓(𝐿, 𝑉/𝑇) ⊆ H1
𝑔(𝐿, 𝑉/𝑇) ⊆ H1(𝐿, 𝑉/𝑇)

are involved in the Iwasawa main conjecture for motives [7, 20].
Coates and Greenberg [8, p. 131] have raised the question motivated by

Iwasawa theory to compute the Bloch–Kato groups when the completion �̂�
of 𝐿 for the 𝑝-adic valuation topology is a perfectoid field [30, §3]. In par-
ticular, if �̂� is a perfectoid field, then Coates and Greenberg have computed
the Bloch–Kato groups when 𝑇 is the 𝑝-adic Tate module associated with
an abelian variety 𝐴 defined over 𝐾 (see Remark 1.2.5), in which case [3,
Example 3.11] 𝑉/𝑇 is the group of 𝑝-power torsion points 𝐴[𝑝∞] of 𝐴, and
the Bloch–Kato groups are all equal and coincide with the image of the
Kummer map

𝐴(𝐿) ⊗𝐙 𝐐𝑝/𝐙𝑝 → H1(𝐿, 𝐴[𝑝∞]).

We refer the reader to the introduction of the articles [8, 27, 29] and the
references therein for more details about this question, its history and its mo-
tivation from Iwasawa theory which can be traced back to the foundational
article [26] by Mazur.
Remark 1.1.1. Coates and Greenberg [8] use the notion, which they have
introduced, of deeply ramified extensions. Recall that the extension 𝐿/𝐾 is
deeply ramified if and only if the field �̂� is perfectoid (see [30, Remark 3.3]
or [24, Lemma 2.21]).
Remark 1.1.2. Let 𝑇∗(1) = Hom𝐙𝑝(𝑇, 𝐙𝑝(1)) be the Tate dual representation
of 𝑇. Let

H1
Iw(𝐾, 𝐿, 𝑇∗(1)) = lim←−−

cores,𝐾′
H1(𝐾′, 𝑇∗(1))

be the first Iwasawa cohomology group of the extension 𝐿/𝐾with coefficients
in𝑇∗(1) , where𝐾′ runs over all the finite extensions of 𝐾 contained in 𝐿, and
the transition morphisms are the corestriction maps. For each ∗ ∈ {𝑒, 𝑓, 𝑔},
the Bloch–Kato groups are compatible under the corestriction maps and the
modules of universal norms associated with 𝑇∗(1) in the extension 𝐿/𝐾 are
defined by

H1
Iw,∗(𝐾, 𝐿, 𝑇∗(1)) = lim←−−

cores,𝐾′
H1
∗(𝐾′, 𝑇∗(1)).

Local Tate duality induces a perfect pairing

H1(𝐿, 𝑉/𝑇) ×H1
Iw(𝐾, 𝐿, 𝑇∗(1)) → 𝐐𝑝/𝐙𝑝.

If 𝑉 is de Rham, then under local Tate duality (see §6.2) the groups

H1
𝑒(𝐿, 𝑉/𝑇) ⊆ H1

𝑓(𝐿, 𝑉/𝑇) ⊆ H1
𝑔(𝐿, 𝑉/𝑇) (1.1.1)
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are respectively the orthogonal complements of the modules of universal
norms

H1
Iw,𝑔(𝐾, 𝐿, 𝑇∗(1)) ⊇ H1

Iw,𝑓(𝐾, 𝐿, 𝑇∗(1)) ⊇ H1
Iw,𝑒(𝐾, 𝐿, 𝑇∗(1)). (1.1.2)

To compute the Bloch–Kato groups (1.1.1) is therefore equivalent to compute
the modules of universal norms (1.1.2).

1.2 Main results
We will first prove the following relation between the Bloch–Kato groups.
We consider the groupH1(𝐿, 𝑉/𝑇) and its subgroups as discrete 𝐙𝑝-modules.
Recall that the Pontryagin dual of a discrete 𝐙𝑝-module𝑀 is the compact
𝐙𝑝-module Hom𝐙𝑝(𝑀,𝐐𝑝/𝐙𝑝).

Proposition 1.2.1. If 𝑉 is de Rham, then the Pontryagin dual of the quotient

H1
𝑔(𝐿, 𝑉/𝑇)/H1

𝑒(𝐿, 𝑉/𝑇)

is a free 𝐙𝑝-module of finite rank bounded independently of 𝐿.

From the perspective of Iwasawa theory, the Bloch–Kato groups are thus
closely related with each other, and it is therefore enough to study one of
them. We study the exponential Bloch–Kato group H1

𝑒(𝐿, 𝑉/𝑇).
We need the following notation to state the main result of the present

article.

• The definition of the Bloch–Kato groups (see §6.1) involves the field of
𝑝-adic periods 𝐁dR and subrings of 𝐁dR introduced by Fontaine [16].
In particular, the natural filtration (Fil𝑛 𝐁dR)𝑛∈𝐙 on 𝐁dR induces an
decreasing separated and exhaustive filtration by subgroups

(Fil𝑛H1
𝑒(𝐿, 𝑉/𝑇))𝑛∈𝐙

on the exponential Bloch–Kato groups H1
𝑒(𝐿, 𝑉/𝑇).

• Let 𝐁+dR = Fil0 𝐁dR be the ring of 𝑝-adic periods, and for each integer
𝑛 ≥ 1, let 𝐁𝑛 = 𝐁+dR/Fil

𝑛 𝐁dR. Recall that 𝐁+dR is endowed with a
canonical topology and a continuous action by 𝐺𝐾 which induces a
structure on each 𝐁𝑛 of 𝐐𝑝-Banach space equipped with a continuous
and 𝐐𝑝-linear action by 𝐺𝐾. Recall also that �̅�𝑝 can be identified with
a subfield of 𝐁+dR, and we have �̅�𝑝 ⊂ 𝐁𝑛. In particular, there is an
inclusion 𝐿 ⊂ 𝐁𝐺𝐿

𝑛 , and we consider 𝐁𝐺𝐿
𝑛 endowed with the subspace

topology from 𝐁𝑛.

• If 𝑉 is de Rham, then, for each integer 𝑛 ≥ 1, we denote by 𝑉≤0,>𝑛 the
maximal quotient representation of 𝑉 whose Hodge–Tate weights are
all in the set 𝐙 ∖ [1, 𝑛], and by 𝑇≤0,>𝑛 the image of 𝑇 in 𝑉≤0,>𝑛. The
quotient map 𝑉/𝑇 → 𝑉≤0,>𝑛/𝑇≤0,>𝑛 induces a morphism

𝜋0,𝑛 ∶ H1(𝐿, 𝑉/𝑇) → H1(𝐿, 𝑉≤0,>𝑛/𝑇≤0,>𝑛).
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Note that if the Hodge–Tate weights of 𝑉 are all ≤ 𝑛, then the repres-
entation 𝑉≤0,>𝑛 is the maximal quotient representation of 𝑉 whose
Hodge–Tate weights are all≤ 0, and we then simply denote the repres-
entation 𝑉≤0,>𝑛 by 𝑉≤0, the lattice 𝑇≤0,>𝑛 by 𝑇≤0, and the map 𝜋0,𝑛
by

𝜋0 ∶ H1(𝐿, 𝑉/𝑇) → H1(𝐿, 𝑉≤0/𝑇≤0).

The main result of the present article is then the following.

Theorem1.2.2. Let𝑛 ≥ 1 be an integer. If 𝑉 is de Rhamand if �̂� is a perfectoid
field such that 𝐿 is dense in 𝐁𝐺𝐿

𝑛 , then the map 𝜋0,𝑛 induces an isomorphism

H1(𝐿, 𝑉/𝑇)/Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) ⥲ H1(𝐿, 𝑉≤0,>𝑛/𝑇≤0,>𝑛).

From Theorem 1.2.2, we then obtain the following descriptions of the
full exponential Bloch–Kato group.

Corollary 1.2.3. Let 𝑛 ≥ 1 be an integer. Assume that 𝑉 is de Rham and that
�̂� is a perfectoid field such that 𝐿 is dense in 𝐁𝐺𝐿

𝑛 .

1. If the quotient representation 𝑉≤0,>𝑛 is trivial, then

H1
𝑒(𝐿, 𝑉/𝑇) = H1(𝐿, 𝑉/𝑇).

2. If the Hodge–Tate weights of 𝑉 are all ≤ 𝑛, then the map 𝜋0 induces an
isomorphism

H1(𝐿, 𝑉/𝑇)/H1
𝑒(𝐿, 𝑉/𝑇) ⥲ H1(𝐿, 𝑉≤0/𝑇≤0).

Theorem 1.2.2 therefore relates the structure of the Bloch–Kato groups
over perfectoid fields to the Galois theory of the ring 𝐁+dR of 𝑝-adic periods.

Example 1.2.4. We recall results about the density of 𝐿 in 𝐁𝐺𝐿
𝑛 .

1. Colmez [9, 11] has proved that �̅�𝑝 is dense in 𝐁+dR.

2. If �̂� is not a perfectoid field, then Iovita and Zaharescu [22, The-
orem 0.1] have proved that, for each 𝑛 ∈ 𝐍, there are isomorphisms

(𝐁+dR)𝐺𝐿 ⥲ 𝐁𝐺𝐿
𝑛 ⥲ �̂�.

Hence, if the field �̂� not perfectoid, then 𝐿 is dense in (𝐁+dR)𝐺𝐿.

3. Let 𝐂𝑝 be the completion of �̅�𝑝 for the 𝑝-adic valuation topology.
Recall that there exists an isomorphism 𝐁1 ⥲ 𝐂𝑝 of 𝑝-adic Banach
representations of 𝐺𝐾. By the Ax–Sen–Tate theorem [33], there are
isomorphisms

𝐁𝐺𝐿
1 ⥲ 𝐂𝐺𝐿

𝑝 ⥲ �̂�.

Hence, the field 𝐿 is always dense in 𝐁𝐺𝐿
1 .
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4. If 𝐿/𝐾 is an infinitely ramified 𝐙𝑝-extension, then the field �̂� is per-
fectoid, and Berger [2] has proved that 𝐿 is not dense in 𝐁𝐺𝐿

2 . The case
of the cyclotomic 𝐙𝑝-extension has also been proved by Colmez [22,
Proposition 8.2].

5. If 𝐿 = 𝐾(𝑝1/𝑝∞) is the extension generated over 𝐾 by all the 𝑝-power
roots of 𝑝, then the field �̂� is perfectoid, and Iovita and Zaharescu [22,
Corollary 8.1] have proved that 𝐿 is not dense in 𝐁𝐺𝐿

2 .

6. Let𝑚 ≥ 2. If 𝐾 = 𝐐𝑝𝑚 is the unique unramified extension of 𝐐𝑝 of
degree𝑚 and if 𝐿 = 𝐾ab is the maximal abelian extension of 𝐾, then
the field �̂� is perfectoid, and Iovita and Zaharescu [22, Corollary 8.2]
have proved that 𝐿 is dense in 𝐁𝐺𝐿

2 .

Iovita and Zaharescu end their article [22] with open problems concerning
the Galois theory of 𝐁+dR.

Remark 1.2.5. By the Ax–Sen–Tate theorem, Theorem 1.2.2 and Corol-
lary 1.2.3 holds for any perfectoid field �̂� in the case 𝑛 = 1. In particular,
the point 2 of the Corollary 1.2.3 in the case 𝑛 = 1 is the main result of the
article [29] and a generalisation of the aforementioned theorem by Coates
and Greenberg [8] for abelian varieties. Indeed, recall [33, 14] that the ra-
tional 𝑝-adic Tate module 𝑉𝑝(𝐴) associated with an abelian variety 𝐴 defined
over 𝐾 is a de Rham 𝑝-adic representation of 𝐺𝐾 whose Hodge–Tate weights
are all in [0, 1], and thus, the point 2 of the Corollary 1.2.3 applies to 𝑉𝑝(𝐴).
The new computations of the exponential Bloch–Kato groups obtained in
Theorem 1.2.2 and Corollary 1.2.3 thereby answer the question raised by
Coates and Greenberg [8, p. 131] in new cases.
Remark 1.2.6. If 𝐿 is the cyclotomic 𝐙𝑝-extension of 𝐾, then 𝐿 is not dense
in 𝐁𝐺𝐿

2 by the aforementioned results of Berger and Colmez, hence The-
orem 1.2.2 and Corollary 1.2.3 apply only in the case 𝑛 = 1. However,
Berger [1], generalising results by Perrin-Riou [27, 28], has computed the
Bloch–Kato groups associated with a de Rham Galois representation over
the cyclotomic extension without any restriction on the Hodge–Tate weights
of the representation. Berger has proved that if 𝑉 is de Rham and if 𝐿 is
the cyclotomic 𝐙𝑝-extension of 𝐾, then the map 𝜋0 induces a surjective
morphism

H1(𝐿, 𝑉/𝑇)/H1
𝑒(𝐿, 𝑉/𝑇) → H1(𝐿, 𝑉≤0/𝑇≤0) → 0

of which the Pontryagin dual of its kernel is a finitely generated 𝐙𝑝-module.
Remark 1.2.7. Additionally to Coates and Greenberg’s open question [8,
p. 131] to compute the Bloch–Kato groups over perfectoid fields, Büyük-
boduk [6, Conjectures 2.5, 2.6, and 2.7] has conjectured that the structure
of the Bloch–Kato groups over the anticyclotomic 𝐙𝑝-extension should be
similar to the structure of the Bloch–Kato groups over the cyclotomic 𝐙𝑝-ex-
tension computed by Berger [1] .
Remark 1.2.8. We precise the role of perfectoid fields in Theorem 1.2.2 and
Corollary 1.2.3. Let 𝐺 be a connected 𝑝-divisible group of height ht(𝐺) and
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dimension dim(𝐺) defined over the ring of integers𝒪𝐾 of 𝐾. Let𝑇𝑝(𝐺) be the
𝑝-adic Tatemodule of 𝐺, and let𝑉𝑝(𝐺) = 𝐐𝑝⊗𝐙𝑝𝑇𝑝(𝐺) be the rational 𝑝-adic
Tate module of 𝐺, hence, 𝑉𝑝(𝐺)/𝑇𝑝(𝐺) = 𝐺[𝑝∞] is the group of 𝑝-power
torsion points of 𝐺. Recall [3, Example 3.10] that the exponential Bloch–
Kato group H1

𝑒(𝐿, 𝐺[𝑝∞]) then coincides with the image of the Kummer
map

𝐺(𝒪𝐿) ⊗𝐙𝑝 𝐐𝑝/𝐙𝑝 → H1(𝐿, 𝐺[𝑝∞]).

Recall [33, 14] that the representation 𝑉𝑝(𝐺) is de Rham with Hodge–Tate
weights in [0, 1] and that the quotient representation 𝑉𝑝(𝐺)≤0 is the rational
𝑝-adic Tate module 𝑉𝑝(𝐺ét) associated with the maximal étale quotient𝐺ét of
𝐺 which is therefore trivial since 𝐺 is assumed to be connected. The point 2
of Corollary 1.2.3 in the case 𝑛 = 1 then applies to 𝐺 and thus the following
statement holds.

• If �̂� is a perfectoid field, then we have H1
𝑒(𝐿, 𝐺[𝑝∞]) = H1(𝐿, 𝐺[𝑝∞]).

On the one hand, if ht(𝐺) = dim(𝐺), Coates and Greenberg [8, Pro-
position 4.7] have proved that if 𝐿/𝐾 is an infinitely wildly ramified, then
H1
𝑒(𝐿, 𝐺[𝑝∞]) = H1(𝐿, 𝐺[𝑝∞]). (Coates and Greenberg state this result for

abelian varieties, their proof is valid for 𝑝-divisible groups.) Note that if �̂� is
perfectoid, then 𝐿/𝐾 is infinitely wildly ramified [8, Lemma 2.12]. Thus, for
specific representations, there exists a wider class of fields than perfectoid
fields for which the equality H1

𝑒(𝐿, 𝑉/𝑇) = H1(𝐿, 𝑉/𝑇) holds.
On the other hand, if ht(𝐺) > dim(𝐺), then Bondarko [4], generalising

a result by Coates and Greenberg [8, Proposition 5.4], has proved that the
following statements are equivalent.

1. The field �̂� is perfectoid.

2. The valuation of 𝐿 is non-discrete and H1
𝑒(𝐿, 𝐺[𝑝∞]) = H1(𝐿, 𝐺[𝑝∞]).

Remark 1.2.9. Perfectoid fields are ubiquitous in Iwasawa theory. Indeed,
the fields presented in Example 1.2.4 are perfectoid. Moreover, recall that if
the extension 𝐿/𝐾 is Galois with Galois group a 𝑝-adic Lie group in which
the inertia subgroup is infinite, then the field �̂� is perfectoid by Sen (see [31]
and [8, Theorem 2.13]). All such fields are studied in Iwasawa theory [7, 20].
Remark 1.2.10. We briefly mention applications of our results in Iwasawa
theory. Results such as the main results of the present article, Theorem 1.2.2
and Corollary 1.2.3, and Berger’s result [1] for the cyclotomic extension allow
to precisely compare the Bloch–Kato Selmer groups to Selmer groups à la
Greenberg [21]. The Bloch–Kato Selmer groups are involved in the Iwasawa
main conjecture while Selmer groups à la Greenberg are more accessible to
study.

1.3 Overview of the proof
The method of the present article to study the Bloch–Kato groups over
perfectoid fields generalises and improves on the approach developed in [29].

The category 𝒞(𝐺𝐾) of almost 𝐂𝑝-representations of 𝐺𝐾 is an abelian
subcategory of the category of 𝑝-adic Banach representations of 𝐺𝐾 intro-
duced by Fontaine [18] which contains as full subcategories the category of
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𝑝-adic representations of 𝐺𝐾 and the category of torsion𝐁+dR-representations
of 𝐺𝐾.

Let 𝑛 ≥ 1 be an integer. Fontaine has associated with 𝑉 a short exact
sequence of almost 𝐂𝑝-representations of 𝐺𝐾

0 → 𝑉 → 𝐸𝑛+(𝑉) → Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) → 0, (1.3.1)

such that

• Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) is a trivial 𝐁𝑛-representation of 𝐺𝐾, that is, there exists
an isomorphism in 𝒞(𝐺𝐾)

Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) ⥲ ⨁
𝑖∈[1,𝑛]

𝐁⊕𝑚𝑖(𝑉)
𝑖 ,

for some integers𝑚𝑖(𝑉) ∈ 𝐍. Moreover, if 𝑉 is de Rham, then𝑚𝑖(𝑉)
is the multiplicity of 𝑖 as a Hodge–Tate weight of 𝑉.

• 𝐸𝑛+(𝑉) is the universal extension of 𝑉 by a trivial 𝐁𝑛-representation in
𝒞(𝐺𝐾).

Let 𝐸𝑛𝛿 (𝑉/𝑇) be the maximal discrete 𝐺𝐾-submodule of 𝐸
𝑛
+(𝑉)/𝑇. Then,

there is an isomorphism

H1(𝐿, 𝑉/𝑇)/Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) ⥲ H1(𝐿, 𝐸𝑛𝛿 (𝑉/𝑇)). (1.3.2)

Moreover, if �̂� is a perfectoid field such that 𝐿 is dense in 𝐁𝐺𝐿
𝑛 , then we will

prove that the computation of H1(𝐿, 𝐸𝑛𝛿 (𝑉/𝑇)) reduces to the computation
of H1(𝐿, 𝐸𝑛+(𝑉)) which we will then carry out as follows.

Let 𝑋FF be the Fargues–Fontaine curve [13], and let Coh𝑋FF(𝐺𝐾) be the
category of 𝐺𝐾-equivariant coherent sheaves over 𝑋FF. Fontaine [19] has
proved that the global section functor on 𝑋FF induces an equivalence of
triangulated categories between the bounded derived categories

D𝑏(Coh𝑋FF(𝐺𝐾)) ⥲ D𝑏(𝒞(𝐺𝐾)). (1.3.3)

Moreover, if �̂� is a perfectoid field, then Fargues and Fontaine have classified
the 𝐺𝐿-equivariant coherent sheaves over 𝑋FF. We will deduce from these
results the following.

Proposition 1.3.1. Let 𝑋 be an almost 𝐂𝑝-representation of 𝐺𝐾. Let 𝑋0 be
the maximal quotient 𝑝-adic representation of 𝑋. If �̂� is a perfectoid field, then
the quotient map 𝑋 → 𝑋0 induces an isomorphism

H1(𝐿, 𝑋) ⥲ H1(𝐿, 𝑋0).

Therefore, in order to compute H1(𝐿, 𝐸𝑛+(𝑉)), it remains to identify the
maximal quotient 𝑝-adic representation 𝐸𝑛+(𝑉)0 of 𝐸𝑛+(𝑉) which we will do
by considering 𝐸𝑛+(𝑉) in terms of vector bundles over the Fargues–Fontaine
curve.

By the equivalence (1.3.3), the short exact sequence (1.3.1) is isomorphic
to the global sections of a short exact sequence of 𝐺𝐾-equivariant coherent
sheaves over 𝑋FF

0 → ℰ(𝑉)
𝜂
−→ ℰ𝑛+(𝑉) → ℱ𝑛

+ (𝑉) → 0,

8



where ℰ(𝑉) = 𝒪𝑋FF ⊗𝐐𝑝 𝑉 is the vector bundle associated with 𝑉 over 𝑋
FF.

If 𝑉 is de Rham, then ℰ(𝑉) and ℰ𝑛+(𝑉) are de Rham vector bundles over 𝑋FF,
and we will prove that 𝜂 ∶ ℰ(𝑉) → ℰ𝑛+(𝑉) is then solution of the following
universal problem.

Let Bun𝑋FF(𝐺𝐾)dR be the category of de Rham 𝐺𝐾-equivariant vector
bundles over𝑋FF, and letBun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR be the full subcategory of Bun𝑋FF(𝐺𝐾)dR

of de Rham 𝐺𝐾-equivariant vector bundles over 𝑋FF whose Hodge–Tate
weights are all in the set𝐙∖[1, 𝑛]. The forgetful functor fromBun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR

to Bun𝑋FF(𝐺𝐾)dR admits a left adjoint

𝜏≤0,>𝑛dR ∶ Bun𝑋FF(𝐺𝐾)dR → Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR

ℰ ↦ ℰ𝑛+.

If 𝑉 is de Rham, then ℰ𝑛+(𝑉) = 𝜏≤0,>𝑛dR (ℰ(𝑉)) and 𝜂 ∶ ℰ(𝑉) → ℰ𝑛+(𝑉) is the
universalmorphism fromℰ(𝑉) to the forgetful functor fromBun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR

to Bun𝑋FF(𝐺𝐾)dR. We will then easily deduce from the universal property of
ℰ𝑛+(𝑉) that the maximal quotient 𝑝-adic representation 𝐸𝑛+(𝑉)0 of 𝐸𝑛+(𝑉) is
the representation 𝑉≤0,>𝑛.

1.4 Organisation of the article
In section 2, we review the definition and some properties of almost 𝐂𝑝-rep-
resentations due to Fontaine [18, 19]. We also briefly review the 𝑝-adic
period rings defined by Fontaine [16].

In section 3, we review the properties of coherent sheaves over the Far-
gues–Fontaine curve [13] which will be needed. We recall the relation (1.3.3)
between almost 𝐂𝑝-representations and coherent sheaves over the Fargues–
Fontaine curve established by Fontaine [19]. We study the maximal quotient
𝑝-adic representation of an almost 𝐂𝑝-representation.

In section 4, we establish Proposition 1.3.1. Then, given an almost𝐂𝑝-rep-
resentation 𝑋, an almost 𝐂𝑝-subrepresentation 𝑍 of 𝑋, and a Galois stable
lattice 𝒵 in 𝑍, we study the cohomology of the maximal discrete Galois
submodule (𝑋/𝒵)𝛿 of 𝑋/𝒵, which will allow us to relate the cohomology of
𝐸𝑛𝛿 (𝑉/𝑇) to the cohomology of 𝐸

𝑛
+(𝑉).

In section 5, we define and study the functor 𝜏≤0,>𝑛dR . We then study the
vector bundle ℰ𝑛+(𝑉).

In section 6, we review the definition of the Bloch–Kato groups and we
define the filtration on the exponential Bloch–Kato group. We then review
the definition and properties of the almost 𝐂𝑝-representation 𝐸𝑛+(𝑉), and
of the discrete Galois module 𝐸𝑛𝛿 (𝑉/𝑇) associated with 𝑉/𝑇 by Fontaine.
We then establish the relation (1.3.2) between the cohomology of 𝐸𝑛𝛿 (𝑉/𝑇)
and the filtered part of the exponential Bloch–Kato group, and the relation
between 𝐸𝑛+(𝑉) and ℰ𝑛+(𝑉). Finally, we prove the main results stated in the
introduction: Proposition 1.2.1, Theorem 1.2.2, and Corollary 1.2.3.
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1.6 Notation
We adopt the convention that the set of natural numbers𝐍 contains 0.

We fix a prime number 𝑝, and an algebraic closure �̅�𝑝 of the field 𝐐𝑝
of 𝑝-adic numbers. We denote by 𝐂𝑝 the completion of �̅�𝑝 for the 𝑝-adic
valuation topology. Every algebraic extension of 𝐐𝑝 considered is contained
in �̅�𝑝. We denote by 𝐐ur

𝑝 the maximal unramified extension of 𝐐𝑝. If 𝐿 is an
algebraic extension of 𝐐𝑝, then we denote by 𝐺𝐿 = Gal(�̅�𝑝/𝐿) the absolute
Galois group of 𝐿, by 𝐿0 = 𝐿 ∩ 𝐐ur

𝑝 the maximal unramified extension of
𝐐𝑝 contained in 𝐿, and by �̂� the completion of 𝐿 for the 𝑝-adic valuation
topology. We also fix a finite extension 𝐾 of 𝐐𝑝.

If 𝐺 is a topological group, then a topological 𝐺-module is a topological
abelian group𝑀 equipped with a continuous action of 𝐺 compatible with
the group structure of 𝑀, and a discrete 𝐺-module is a topological 𝐺-mod-
ule whose underlying topological space is discrete. If 𝐺 is a topological
group, and if 𝑀 is a topological 𝐺-module, then, for each 𝑛 ∈ 𝐍, we denote
by H𝑛(𝐺,𝑀) the 𝑛-th group of continuous group cohomology of 𝐺 with
coefficients in𝑀 (see [34, §2] or [29, Appendix A]). Recall that if

0 → 𝑀′ → 𝑀 → 𝑀″ → 0 (1.6.1)

is a short exact sequence of topological 𝐺-modules such that the topology of
𝑀′ is the subspace topology from𝑀, and the topology of 𝑀″ is the quotient
topology from 𝑀, then the short exact sequence (1.6.1) induces an exact
sequence

0 H0(𝐺,𝑀′) H0(𝐺,𝑀) H0(𝐺,𝑀″)

H1(𝐺,𝑀′) H1(𝐺,𝑀) H1(𝐺,𝑀″).

←→ ←→ ←→ ←

→ ←→ ←→

(1.6.2)
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Moreover, if there exists a continuous section of the projection of 𝑀 on𝑀″

as topological space, then the exact sequence (1.6.2) extends into a long exact
sequence

⋯→ H𝑛(𝐺,𝑀′) → H𝑛(𝐺,𝑀) → H𝑛(𝐺,𝑀″) → H𝑛+1(𝐺,𝑀′) → ⋯ .

In particular, such a continuous section exists if 𝑀″ is a discrete 𝐺-module.
If 𝐺𝑘 is the absolute Galois group of a field 𝑘, and if 𝑀 is a topological

𝐺𝑘-module, then, for each 𝑛 ∈ 𝐍, we write H𝑛(𝑘,𝑀) instead of H𝑛(𝐺𝑘,𝑀),
and H𝑛(𝑘,𝑀) is the 𝑛-th group of Galois cohomology of 𝑘 with coefficients
in𝑀.

We denote by 𝐙𝑝(1) the free 𝐙𝑝-module of rank 1 whose elements are
sequences (𝜁𝑝𝑛)𝑛∈𝐍 of 𝑝-power roots of unity in �̅�𝑝 such that 𝜁1 = 1 and
𝜁𝑝𝑝𝑛+1 = 𝜁𝑝𝑛 for each 𝑛 ∈ 𝐍, endowed with the natural action of 𝐺𝐐𝑝 by the
cyclotomic character 𝜒. We fix a generator 𝑡 of 𝐙𝑝(1) with group law written
additively. For each 𝑛 ∈ 𝐍, we set

𝐙𝑝(𝑛) = Sym𝑛
𝐙𝑝
(𝐙𝑝(1)),

𝐙𝑝(−𝑛) = Hom𝐙𝑝(𝐙𝑝(𝑛), 𝐙𝑝).

Then, for each 𝑛 ∈ 𝐙, the Galois group 𝐺𝐐𝑝 acts on 𝐙𝑝(𝑛) by 𝜒
𝑛.

If 𝐿 is an algebraic extension of 𝐐𝑝 and if 𝑀 is a 𝐙𝑝-module equipped
with a linear action of 𝐺𝐿, then, for each 𝑛 ∈ 𝐙, then the 𝑛-th Tate twist𝑀(𝑛)
of 𝑀 is the 𝐙𝑝-module

𝑀(𝑛) = 𝑀 ⊗𝐙𝑝 𝐙𝑝(𝑛)

on which 𝐺𝐿 acts by 𝑔(𝑚 ⊗ 𝑧) = 𝑔(𝑚) ⊗ 𝑔(𝑧) = 𝜒𝑛(𝑔)(𝑔(𝑚) ⊗ 𝑧), for all
𝑔 ∈ 𝐺𝐿,𝑚 ∈ 𝑀 and 𝑧 ∈ 𝐙𝑝(𝑛).

2 Almost 𝐂𝑝-representations

2.1 𝑝-adic Banach representations and almost𝐂𝑝-repres-
entations

We recall the definition of the category of almost 𝐂𝑝-representations of 𝐺𝐾
introduced by Fontaine [18].

A 𝑝-adic Banach representation of 𝐺𝐾 is a 𝐐𝑝-Banach space equipped
with a continuous and𝐐𝑝-linear action of 𝐺𝐾. Amorphism of 𝑝-adic Banach
representations of 𝐺𝐾 is a 𝐺𝐾-equivariant continuous and 𝐐𝑝-linear map.
We denote by ℬ(𝐺𝐾) the category of 𝑝-adic Banach representations of 𝐺𝐾.

A 𝐺𝐾-stable lattice in a 𝑝-adic Banach representation 𝑋 of 𝐺𝐾 is a 𝐙𝑝-sub-
module 𝒳 of 𝑋 which is complete and separated for the 𝑝-adic topology,
stable under the action of 𝐺𝐾 and such that the inclusion of 𝒳 in 𝑋 induces
an isomorphism 𝒳 ⊗𝐙𝑝 𝐐𝑝 ⥲ 𝑋.

Note that the field 𝐂𝑝 endowed with its natural topology and its natural
action of 𝐺𝐾 is a 𝑝-adic Banach representation of 𝐺𝐾. A trivial 𝐂𝑝-represent-
ation of 𝐺𝐾 is a 𝑝-adic Banach representation of 𝐺𝐾 isomorphic to 𝐂

⊕𝑑
𝑝 for

some 𝑑 ∈ 𝐍.
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If 𝑋 and 𝑌 are two 𝑝-adic Banach representations of 𝐺𝐾, then an almost
isomorphism from 𝑋 to 𝑌 is a triple (𝑉, 𝑈, 𝛼) composed of:

1. a finite dimensional 𝐺𝐾-stable 𝐐𝑝-vector subspace 𝑉 of 𝑋,

2. a finite dimensional 𝐺𝐾-stable 𝐐𝑝-vector subspace 𝑈 of 𝑌, and

3. an isomorphism in ℬ(𝐺𝐾)

𝛼 ∶ 𝑋/𝑉 ⥲ 𝑌/𝑈.

Almost isomorphisms form an equivalence relation on 𝑝-adic Banach rep-
resentations of 𝐺𝐾. Two 𝑝-adic Banach representations of 𝐺𝐾 are almost
isomorphic if there exists an almost isomorphism between them.

An almost 𝐂𝑝-representation of 𝐺𝐾 is a 𝑝-adic Banach representation
of 𝐺𝐾 which is almost isomorphic to a trivial 𝐂𝑝-representation of 𝐺𝐾. We
denote by 𝒞(𝐺𝐾) the full subcategory of ℬ(𝐺𝐾) of almost𝐂𝑝-representations
of 𝐺𝐾.

Theorem 2.1.1 (Fontaine). The category 𝒞(𝐺𝐾) is abelian.

Let Rep𝐐𝑝
(𝐺𝐾) be the category of 𝑝-adic representations of 𝐺𝐾, that is,

the category of finite dimensional 𝐐𝑝-vector spaces equipped with a con-
tinuous and𝐐𝑝-linear action of 𝐺𝐾. The category Rep𝐐𝑝

(𝐺𝐾) defines a Serre
subcategory of 𝒞(𝐺𝐾) which we denote by 𝒞0(𝐺𝐾).

2.2 𝑝-adic period rings
We briefly review the 𝑝-adic period rings defined by Fontaine [16].

The ring of 𝑝-adic periods 𝐁+dR is a complete discrete valuation ring en-
dowed with an action of 𝐺𝐐𝑝, whose residue field is 𝐂𝑝, and of which 𝑡 is a
uniformiser.

The field of 𝑝-adic periods 𝐁dR is the field of fractions of 𝐁+dR. There is a
natural filtration on 𝐁dR by the fractional ideals

Fil𝑛 𝐁dR = 𝐁+dR ⋅ 𝑡𝑛, 𝑛 ∈ 𝐙,

which is stable under the action of 𝐺𝐐𝑝. For each 𝑛 ∈ 𝐍, we set

𝐁𝑛 = 𝐁+dR/Fil
𝑛 𝐁dR.

In particular, there is an isomorphism 𝐁1 ⥲ 𝐂𝑝.
The field 𝐁dR is equipped with a topology, the so-called canonical topo-

logy (see [16, §1.5.3] or [11]), which is coarser than the valuation topology
from 𝐁+dR. The action of 𝐺𝐐𝑝 on 𝐁dR endowed with the canonical topology is
continuous, and, we have

(Fil𝑛 𝐁dR)𝐺𝐾 = 𝐁𝐺𝐾
dR = 𝐾 if 𝑛 ≤ 0,

(Fil𝑛 𝐁dR)𝐺𝐾 = 0 if 𝑛 > 0.
(2.2.1)

Unless otherwise stated, we will consider 𝐁dR and its subquotient rings
endowed with the canonical topology. In particular, for each integer 𝑛 > 0,
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𝐁𝑛 is a 𝑝-adic Banach representation of 𝐺𝐐𝑝, and the isomorphism 𝐁1 ⥲ 𝐂𝑝
is an isomorphism of 𝑝-adic Banach representations of 𝐺𝐐𝑝.

Moreover, the map 𝐁+dR → 𝐂𝑝 induces an isomorphism between the
separable closure of 𝐐𝑝 in 𝐁+dR and the field of the 𝑝-adic algebraic numbers
�̅�𝑝, which we use to identify these two fields. The field �̅�𝑝 is then dense in
𝐁+dR ([9, 11]).

The ring 𝐁+dR contains a subring 𝐁
+
cris, stable under the action of 𝐺𝐐𝑝,

containing 𝑡, and equipped with an endomorphism 𝜑 commuting with the
action of 𝐺𝐐𝑝. The ring of crystalline periods is 𝐁cris = 𝐁+cris[1/𝑡]. We have

𝐁𝐺𝐾
cris = 𝐾0.

Moreover, we have 𝜑(𝑡) = 𝑝𝑡, and the endomorphism 𝜑 extends uniquely to
𝐁cris.

Let
𝐁e = 𝐁𝜑=1cris = {𝑏 ∈ 𝐁cris, 𝜑(𝑏) = 𝑏},

and, for each 𝑛 ∈ 𝐍, let

(𝐁+cris)𝜑=𝑝
𝑛 = {𝑏 ∈ 𝐁+cris, 𝜑(𝑏) = 𝑝𝑛𝑏}.

The ring 𝐁e is a principal ideal domain [13, Théorème 6.5.2]. Moreover, the
ring 𝐁e inherits a filtration from 𝐁dR, and we have

Fil𝑛 𝐁e = Fil𝑛 𝐁dR ∩ 𝐁e = {
(𝐁+cris)𝜑=𝑝

−𝑛 ⋅ 𝑡𝑛 if 𝑛 ≤ 0,
0 if 𝑛 > 0.

Furthermore, we have

Fil0 𝐁e = (𝐁+cris)𝜑=1 = 𝐐𝑝,

and there exists 𝐺𝐐𝑝-equivariant short exact sequences of topological 𝐐𝑝-al-
gebras, the so-called fundamental exact sequences,

0 → 𝐐𝑝 → 𝐁e → 𝐁dR/𝐁+dR → 0, (2.2.2)

and, for each 𝑛 ∈ 𝐍,

0 → 𝐐𝑝 → Fil−𝑛 𝐁e → Fil−𝑛 𝐁dR/𝐁+dR → 0. (2.2.3)

2.3 Almost 𝐂𝑝-representations and 𝑝-adic periods

We recall the relation between𝐁+dR-representations of 𝐺𝐾 and almost𝐂𝑝-rep-
resentations of 𝐺𝐾 established by Fontaine [18].

LetReptor𝐁+
dR
(𝐺𝐾) be the category of finitely generated torsion𝐁+dR-modules

equipped with a continuous and 𝐁+dR-semilinear action of 𝐺𝐾. We call an
object of Reptor𝐁+

dR
(𝐺𝐾) a torsion 𝐁+dR-representation of 𝐺𝐾.

Note that the 𝐁+dR-module underlying a torsion 𝐁
+
dR-representation of 𝐺𝐾

is a𝐁𝑛-module for some sufficiently large integer 𝑛. Since𝐁𝑛 is a𝐐𝑝-Banach
space, a torsion 𝐁+dR-representation of 𝐺𝐾 is a 𝑝-adic Banach representation
of 𝐺𝐾. Hence, there is a forgetful functor from Reptor𝐁+

dR
(𝐺𝐾) to ℬ(𝐺𝐾) whose

essential image we denote by 𝒞+∞(𝐺𝐾).
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Theorem 2.3.1 (Fontaine). The forgetful functor from Reptor𝐁+
dR
(𝐺𝐾) toℬ(𝐺𝐾)

is fully faithful. Moreover, its essential image 𝒞+∞(𝐺𝐾) is a weak Serre subcat-
egory of 𝒞(𝐺𝐾).

2.4 Torsion pairs
We recall the definition and properties of torsion pairs on a abelian cat-
egory [5, §1.12].

Definition 2.4.1. Let 𝒜 be an abelian category. A torsion pair on 𝒜 is a
tuple (ℬ, 𝒞) of strictly full subcategories of 𝒜 such that

1. for each object 𝐵 of ℬ and each object 𝐶 of 𝒞, we have

Hom𝒜(𝐵, 𝐶) = 0,

2. for each object 𝐴 of 𝒜, there exists a short exact sequence

0 → 𝐵 → 𝐴 → 𝐶 → 0,

with 𝐵 an object of ℬ, and 𝐶 an object of 𝒞.

If (ℬ, 𝒞) is a torsion pair on an abelian category 𝒜, then the definition
of a torsion pair implies that for each object 𝐴 of 𝒜, there exists a unique,
up to isomorphism, short exact sequence

0 → 𝐵 → 𝐴 → 𝐶 → 0,

with 𝐵 an object of ℬ, and 𝐶 an object of 𝒞 (see [5, Proposition 1.12.4]).

2.5 Effective and coeffective almost 𝐂𝑝-representations
Werecall the definition of effective and coeffective almost𝐂𝑝-representations
of 𝐺𝐾 due to Fontaine [19, §3L, §6C].

An almost 𝐂𝑝-representation 𝑋 of 𝐺𝐾 is effective if there exists an object
𝑌 of 𝒞+∞(𝐺𝐾) such that 𝑋 is isomorphic to a subobject of 𝑌. We denote by
𝒞≥0(𝐺𝐾) the full subcategory of 𝒞(𝐺𝐾) of effective almost𝐂𝑝-representations
of 𝐺𝐾.

An almost 𝐂𝑝-representation 𝑋 of 𝐺𝐾 is coeffective if for all object 𝑌 of
𝒞+∞(𝐺𝐾), we have

Hom𝒞(𝐺𝐾)(𝑋, 𝑌) = 0.

We denote by 𝒞<0(𝐺𝐾) the full subcategory of 𝒞(𝐺𝐾) of coeffective almost
𝐂𝑝-representations of 𝐺𝐾.

Proposition 2.5.1 (Fontaine). The subcategories 𝒞<0(𝐺𝐾) and 𝒞≥0(𝐺𝐾) of
𝒞(𝐺𝐾) satisfy the following properties.

1. The categories 𝒞<0(𝐺𝐾) and 𝒞≥0(𝐺𝐾) are exact subcategories of 𝒞(𝐺𝐾).

2. The category 𝒞≥0(𝐺𝐾) is the smallest strictly full subcategory of 𝒞(𝐺𝐾)
containing 𝒞0(𝐺𝐾) and 𝒞+∞(𝐺𝐾) and stable under taking extensions
and direct summands.

3. The tuple (𝒞<0(𝐺𝐾), 𝒞≥0(𝐺𝐾)) is a torsion pair on 𝒞(𝐺𝐾).
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3 Coherent sheaves over the Fargues–Fontaine
curve

3.1 The Fargues–Fontaine curve
Wereviewproperties of coherent sheaves over the Fargues–Fontaine curve [13].

Let

𝑋FF = Proj (⨁
𝑛∈𝐍

(𝐁+cris)𝜑=𝑝
𝑛)

be the Fargues–Fontaine curve. Recall that the scheme 𝑋FF is regular, No-
etherian, separated, connected, and one-dimensional. Moreover, the curve
𝑋FF is complete.

We recall the description à la Beauville–Laszlo of coherent sheaves over
𝑋FF.

Let 𝐿 be an algebraic extension of 𝐐𝑝. For a ring 𝑅 ∈ {𝐁e, 𝐁+dR, 𝐁dR}, we
denote by Rep𝑅(𝐺𝐿) the category of finitely generated 𝑅-modules equipped
with a continuous and 𝑅-semilinear action of 𝐺𝐿, and an object of Rep𝑅(𝐺𝐿)
is called a 𝑅-representation of 𝐺𝐿.

Letℳ(𝐺𝐿) be the category whose objects are triple (𝑀e,𝑀+
dR, 𝜄𝑀) com-

posed of:

1. a 𝐁e-representation𝑀e of 𝐺𝐿,

2. a 𝐁+dR-representation𝑀
+
dR of 𝐺𝐿, and

3. a 𝐺𝐿-equivariant morphism of 𝐁+dR-modules

𝜄𝑀 ∶ 𝑀+
dR → 𝐁dR ⊗𝐁e 𝑀e

which induces an isomorphism of 𝐁dR-representations of 𝐺𝐿

𝐁dR ⊗𝐁+
dR
𝑀+

dR ⥲ 𝐁dR ⊗𝐁e 𝑀e,

and whose maps are tuple 𝑓 = (𝑓e, 𝑓+dR) composed of:

1. a morphism 𝑓e of 𝐁e-representations of 𝐺𝐿, and

2. a morphism 𝑓+dR of 𝐁
+
dR-representations of 𝐺𝐿,

such that the diagram

𝑀+
dR 𝐁dR ⊗𝐁e 𝑀e

𝑁+
dR 𝐁dR ⊗𝐁e 𝑁e

←→ 𝑓+dR

←→
𝜄𝑀

←→ 1⊗𝑓e

←→
𝜄𝑁

commutes.
The Galois group 𝐺𝐐𝑝 acts on the Fargues–Fontaine curve 𝑋

FF via its
action on the period rings defining 𝑋FF. We denote by Coh𝑋FF(𝐺𝐿) the
category of 𝐺𝐿-equivariant coherent sheaves over 𝑋FF.
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Recall that there exists a unique closed point of 𝑋FF, denoted by ∞,
fixed by the action of 𝐺𝐐𝑝 on 𝑋

FF. The completion of the stalk 𝒪𝑋FF,∞ is
isomorphic to 𝐁+dR, and 𝑋FF ∖ {∞} = Spec(𝐁e). Therefore, there is a functor

Coh𝑋FF(𝐺𝐿) → ℳ(𝐺𝐿) (3.1.1)

which associates with a coherent sheaf ℱ the triple:

• ℱe = H0(𝑋FF ∖ {∞}, ℱ),

• ℱ+
dR the completion of the stalk ℱ∞, and

• 𝜄ℱ the glueing data.

Proposition 3.1.1 (Fargues–Fontaine). The functor (3.1.1) induces an equi-
valence of categories

Coh𝑋FF(𝐺𝐿) ⥲ ℳ(𝐺𝐿).

Wedenote byBun𝑋FF(𝐺𝐿) the full subcategory of Coh𝑋FF(𝐺𝐿) of𝐺𝐿-equivari-
ant vector bundles over 𝑋FF.

Under the equivalence of Theorem3.1.1, the categoryBun𝑋FF(𝐺𝐿) is equi-
valent to the full subcategory ofℳ(𝐺𝐿)whose objects are triple (𝑀e,𝑀+

dR, 𝜄𝑀)
such that

• the 𝐁e-module underlying𝑀e is a free, and

• the 𝐁+dR-module underlying𝑀
+
dR is a free.

Moreover, if 𝐿 is a finite extension of 𝐐𝑝, then Fontaine [19, Proposi-
tion 3.1] has proved that the 𝐁e-module underlying any 𝐁e-representation of
𝐺𝐿 is free. Therefore, we have the following characterisation of 𝐺𝐾-equivari-
ant vector bundles and 𝐺𝐾-equivariant torsion coherent sheaves over 𝑋FF.

Proposition 3.1.2. Let ℱ be 𝐺𝐾-equivariant coherent sheaf over 𝑋FF.

1. The sheaf ℱ is a vector bundle if and only if the 𝐁+dR-module underlying
ℱ+
dR is free.

2. The following statements are equivalent.

(a) The sheaf ℱ is torsion.
(b) The 𝐁e-representation ℱe is trivial.
(c) The 𝐁+dR-representation ℱ

+
dR is torsion.

Notation 3.1.3. We will write ℱ = (ℱe, ℱ+
dR, 𝜄ℱ) a coherent sheaf over 𝑋FF.

We will omit the map 𝜄ℱ when there is no ambiguity.
Notation 3.1.4. If 𝑀+

dR denotes a 𝐁
+
dR-module, then we set

𝑀dR = 𝐁dR ⊗𝐁+
dR
𝑀+

dR.
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3.2 The Harder–Narasimhan filtration
We denote by K0(Coh𝑋FF) the Grothendieck group associated with the cat-
egory Coh𝑋FF of coherent sheaves over 𝑋FF. There exists group homomorph-
isms degree and rank

deg ∶ K0(Coh𝑋FF) → 𝐙,
rank ∶ K0(Coh𝑋FF) → 𝐙,

characterised by the following properties.

• If ℱ is a coherent sheaf over 𝑋FF, then rank(ℱ) is the rank of ℱ as an
𝒪𝑋FF-module.

• If ℒ is an invertible sheaf over 𝑋FF, then deg(ℒ) is the degree of the
divisor associated with ℒ.

• If ℰ is a vector bundle over𝑋FF of rank 𝑟, and if⋀𝑟 ℰ is the determinant
line bundle associated with ℰ, then

deg(ℰ) = deg (
𝑟

⋀ℰ) .

• If ℱ is a torsion coherent sheaf over 𝑋FF, then

deg(ℱ) = ∑
closed point 𝑥∈𝑋FF

length𝒪𝑋FF,𝑥
(ℱ𝑥).

The slope of a coherent sheaf ℱ, denoted by 𝜇(ℱ), is the element of
𝐐 ∪ {+∞} defined by

𝜇(ℱ) = {
+∞ if ℱ is torsion,
deg(ℱ)
rank(ℱ)

otherwise.

A coherent sheaf ℱ is semistable if for each non-zero subsheaf ℱ′ ⊆ ℱ, we
have 𝜇(ℱ′) ≤ 𝜇(ℱ).

If ℱ is a coherent sheaf over 𝑋FF, there exists a unique filtration of ℱ by
subsheaves

0 = ℱ0 ⊆ ℱ1 ⊆ ⋯ ⊆ ℱ𝑛−1 ⊆ ℱ𝑛 = ℱ (3.2.1)
such that

1. the sheaf ℱ𝑖/ℱ𝑖−1 is semistable for each 𝑖 ∈ {1,… , 𝑛}, and

2. 𝜇(ℱ𝑖/ℱ𝑖−1) > 𝜇(ℱ𝑖+1/ℱ𝑖) for each 𝑖 ∈ {1,… , 𝑛 − 1}.

The filtration (3.2.1) is theHarder–Narasimhan filtration of ℱ, and the slopes
(𝜇(ℱ𝑖/ℱ𝑖−1))𝑖∈{1,…,𝑛} are the Harder–Narasimhan slopes of ℱ.

Proposition 3.2.1 (Fargues–Fontaine). Let ℱ be a coherent sheaf over 𝑋FF.
For each integer 𝑛 > 1, the group H𝑛(𝑋FF, ℱ) is trivial. There is an exact
sequence functorial in ℱ

0 → H0(𝑋FF, ℱ) → ℱe ⊕ℱ+
dR

𝛿ℱ−−→ ℱdR → H1(𝑋FF, ℱ) → 0,

where 𝛿ℱ(𝑥, 𝑦) = 𝑥 − 𝜄ℱ(𝑦). Moreover,

17



1. the groupH0(𝑋FF, ℱ) is trivial if and only if the Harder–Narasimhan
slopes of ℱ are all < 0, and

2. the groupH1(𝑋FF, ℱ) is trivial if and only if the Harder–Narasimhan
slopes of ℱ are all ≥ 0.

Let 𝐿 be an algebraic extension of 𝐐𝑝.
Remark 3.2.2. The uniqueness of the Harder–Narasimhan filtration implies
that the Harder–Narasimhan filtration of a 𝐺𝐿-equivariant coherent sheaf is
composed of 𝐺𝐿-equivariant coherent sheaves.

If �̂� is a perfectoid field [30, §3], thenFargues andFontaine [13, Théorème 9.3.1
and Théorème 9.4.1] have classified 𝐺𝐿-equivariant sheaves over 𝑋FF. Part
of the classification is the following.

Theorem3.2.3 (Fargues–Fontaine). If �̂� is a perfectoid field, then theHarder–
Narasimhan filtration of a 𝐺𝐿-equivariant coherent sheaf over 𝑋FF is split in
Coh𝑋FF(𝐺𝐿).

3.3 Harder–Narasimhan twists
We recall the definition and properties of the Harder–Narasimhan twists of
coherent sheaves due to Fontaine [19, §3H]. If ℱ is a coherent sheaf over
𝑋FF, then, for each 𝑛 ∈ 𝐙, the 𝑛-th Harder–Narasimhan twist of ℱ, denoted
by ℱ(𝑛)HN, is the coherent sheaf defined as the following modification of ℱ
at the point∞:

ℱ(𝑛)HN = (ℱe, ℱ+
dR(−𝑛), 𝜄ℱ(−𝑛)).

We then have the following short exact sequences of coherent sheaves

0 → ℱ → ℱ(𝑛)HN → (0, 𝑡−𝑛ℱ+
dR/ℱ

+
dR) → 0 if 𝑛 ≥ 0, (3.3.1)

0 → ℱ(𝑛)HN → ℱ → (0,ℱ+
dR/𝑡−𝑛ℱ

+
dR) → 0 if 𝑛 < 0. (3.3.2)

Moreover, if 𝐿 is an algebraic extension of 𝐐𝑝 and if ℱ is𝐺𝐿-equivariant, then
ℱ(𝑛)HN is 𝐺𝐿-equivariant, and the short exact sequences (3.3.1) and (3.3.2)
are short exact sequences of 𝐺𝐿-equivariant coherent sheaves.

Proposition 3.3.1 (Fontaine). Let ℱ be a coherent sheaf over 𝑋FF. Let 𝑛 ∈ 𝐙.
We have

𝜇(ℱ(𝑛)HN) = 𝜇(ℱ) + 𝑛.

Moreover, if ℱ is semistable, then ℱ(𝑛)HN is semistable.

Corollary 3.3.2. Let ℱ be a coherent sheaf over 𝑋FF, and let (ℱ𝑖)𝑖∈{0,…,𝑛} be
the Harder–Narasimhan filtration of ℱ. Let 𝑛 ∈ 𝐙. Then (ℱ𝑖(𝑛)HN)𝑖∈{0,…,𝑛}
is the Harder–Narasimhan filtration of ℱ(𝑛)HN. In particular, the Harder–
Narasimhan slopes of ℱ(𝑛)HN are {𝜇𝑖 + 𝑛}𝑖∈{1,…,𝑛}, where 𝜇𝑖 runs over the
Harder–Narasimhan slopes of ℱ.

18



3.4 Almost 𝐂𝑝-representations and coherent sheaves
Werecall the relation between almost𝐂𝑝-representations of𝐺𝐾 and𝐺𝐾-equivari-
ant coherent sheaves over the Fargues–Fontaine curve established by Fon-
taine [19].

Let Coh𝑋FF(𝐺𝐾) be the category of 𝐺𝐾-equivariant coherent sheaves over
𝑋FF. We set the following subcategories of Coh𝑋FF(𝐺𝐾).

• Let Coh≥0𝑋FF(𝐺𝐾) be the full subcategory of Coh𝑋FF(𝐺𝐾) of 𝐺𝐾-equivari-
ant coherent sheaves whose Harder–Narasimhan slopes are all ≥
0. Note that the category Coh≥0𝑋FF(𝐺𝐾) is an exact subcategory of
Coh𝑋FF(𝐺𝐾).

• Let Coh<0𝑋FF(𝐺𝐾) be the full subcategory of Coh𝑋FF(𝐺𝐾) of 𝐺𝐾-equivari-
ant coherent sheaves whose Harder–Narasimhan slopes are all <
0. Note that the category Coh<0𝑋FF(𝐺𝐾) is an exact subcategory of
Coh𝑋FF(𝐺𝐾).

• Let Coh0𝑋FF(𝐺𝐾) be the full subcategory of Coh𝑋FF(𝐺𝐾) composed of
the 𝐺𝐾-equivariant coherent sheaves semistable of slope 0. Note that
the category Coh0𝑋FF(𝐺𝐾) is an abelian subcategory of Coh𝑋FF(𝐺𝐾).

• Let Coh+∞𝑋FF(𝐺𝐾) be the full subcategory of Coh𝑋FF(𝐺𝐾) of 𝐺𝐾-equivari-
ant torsion coherent sheaves. Note that the category Coh+∞𝑋FF(𝐺𝐾) is an
abelian subcategory of Coh𝑋FF(𝐺𝐾).

The classification of coherent sheaves over 𝑋FF, Theorem 3.2.3, implies
the following.

Proposition 3.4.1. The tuple (Coh≥0𝑋FF(𝐺𝐾),Coh
<0
𝑋FF(𝐺𝐾)) is a torsion pair on

Coh𝑋FF(𝐺𝐾).

Theorem 3.4.2 (Fargues–Fontaine, Fontaine). There are functors

Coh𝑋FF(𝐺𝐾) → 𝒞≥0(𝐺𝐾)

ℱ ↦ H0(𝑋FF, ℱ)

and
Coh𝑋FF(𝐺𝐾) → 𝒞<0(𝐺𝐾)

ℱ ↦ H1(𝑋FF, ℱ)

which induce the following equivalence of categories.

1. The functorℱ ↦ H0(𝑋FF, ℱ) induces an equivalence of exact categories

Coh≥0𝑋FF(𝐺𝐾) ⥲ 𝒞≥0(𝐺𝐾).

2. The functorℱ ↦ H0(𝑋FF, ℱ) induces an equivalence of abelian categor-
ies

Coh0𝑋FF(𝐺𝐾) ⥲ 𝒞0(𝐺𝐾),
of which the functor

𝒞0(𝐺𝐾) ⥲ Coh0𝑋FF(𝐺𝐾)
𝑉 ↦ ℰ(𝑉) = 𝒪𝑋FF ⊗𝐐𝑝 𝑉 = (𝐁e ⊗𝐐𝑝 𝑉,𝐁

+
dR ⊗𝐐𝑝 𝑉)

is a quasi-inverse.
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3. The functorℱ ↦ H0(𝑋FF, ℱ) induces an equivalence of abelian categor-
ies

Coh+∞𝑋FF(𝐺𝐾) ⥲ 𝒞+∞(𝐺𝐾),

of which the functor

𝒞+∞(𝐺𝐾) ⥲ Coh+∞𝑋FF(𝐺𝐾)
𝑀+

dR ↦ (0,𝑀+
dR)

is a quasi-inverse.

4. The functor ℱ ↦ H1(𝑋FF, ℱ) induces an equivalence of exact categories

Coh<0𝑋FF(𝐺𝐾) ⥲ 𝒞<0(𝐺𝐾).

Remark 3.4.3. While the global sections functor does not extend to an equival-
ence of categories betweenCoh𝑋FF(𝐺𝐾) and𝒞(𝐺𝐾), Fontaine has proved that
it induces an equivalence of triangulated categories between the bounded
derived categories

D𝑏(Coh𝑋FF(𝐺𝐾)) ⥲ D𝑏(𝒞(𝐺𝐾)). (3.4.1)

Fontaine has also proved that the categories Coh𝑋FF(𝐺𝐾) and 𝒞(𝐺𝐾) can be
recovered from each other as follows.

• The torsion pair (Coh≥0𝑋FF(𝐺𝐾),Coh
<0
𝑋FF(𝐺𝐾)) on Coh𝑋FF(𝐺𝐾) induces a

𝑡-structure on D𝑏(Coh𝑋FF(𝐺𝐾)) whose abelian heart is naturally equi-
valent to 𝒞(𝐺𝐾) via the equivalence (3.4.1).

• The torsion pair (𝒞<0(𝐺𝐾), 𝒞≥0(𝐺𝐾)) on 𝒞(𝐺𝐾) induces a 𝑡-structure
onD𝑏(𝒞(𝐺𝐾))whose abelianheart is naturally equivalent toCoh𝑋FF(𝐺𝐾)
via the equivalence (3.4.1).

We also set the following subcategories of Coh𝑋FF(𝐺𝐾) and 𝒞(𝐺𝐾).

• Let Coh>0𝑋FF(𝐺𝐾) be the full subcategory of Coh𝑋FF(𝐺𝐾) of 𝐺𝐾-equivari-
ant coherent sheaves whose Harder–Narasimhan slopes are all > 0.
Note that the categoryCoh>0𝑋FF(𝐺𝐾) is a full subcategory of Coh

≥0
𝑋FF(𝐺𝐾),

and that the category Coh+∞𝑋FF(𝐺𝐾) is a full subcategory of Coh
>0
𝑋FF(𝐺𝐾).

• Let 𝒞>0(𝐺𝐾) be the subcategory of 𝒞(𝐺𝐾) equivalent to the category
Coh>0𝑋FF(𝐺𝐾) via the equivalence of categoriesCoh

≥0
𝑋FF(𝐺𝐾) ⥲ 𝒞≥0(𝐺𝐾)

from Theorem 3.4.2. Note that the category 𝒞+∞(𝐺𝐾) is a full subcat-
egory of 𝒞>0(𝐺𝐾).

3.5 Almost 𝐂𝑝-representations and 𝑝-adic representa-
tions

Definition 3.5.1. Let 𝒞≠0(𝐺𝐾) be the full subcategory of 𝒞(𝐺𝐾) of almost
𝐂𝑝-representation 𝑋 of 𝐺𝐾 such that for all 𝑝-adic representation 𝑉 of 𝐺𝐾,
we have

Hom𝒞(𝐺𝐾)(𝑋, 𝑉) = 0.
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Proposition 3.5.2. The tuple (𝒞≠0(𝐺𝐾), 𝒞0(𝐺𝐾)) is a torsion pair on 𝒞(𝐺𝐾).
Moreover, if 𝑋 is an almost 𝐂𝑝-representation of 𝐺𝐾, then there exists a com-
mutative diagram in𝒞(𝐺𝐾)whose columns and rows are exact which is unique
up to isomorphism

0 0

0 𝑋<0 𝑋≠0 𝑋>0 0

0 𝑋<0 𝑋 𝑋≥0 0

𝑋0 𝑋0

0 0 ,
←→ ←→

←→ ←→←→

⇐⇐

←→

←→

←→

←→

←→ ←→←→ ←→

←→

←→

←→

⇐ ⇐

←→ ←→

with 𝑋<0 an object of 𝒞<0(𝐺𝐾), 𝑋>0 an object of 𝒞>0(𝐺𝐾), 𝑋≥0 an object of
𝒞≥0(𝐺𝐾), 𝑋0 an object of 𝒞0(𝐺𝐾), and 𝑋≠0 an object of 𝒞≠0(𝐺𝐾).

Proof. By Definition 3.5.1 of the subcategory 𝒞≠0(𝐺𝐾), the first property in
the Definition 2.4.1 of a torsion pair is satisfied. We prove the second one.

Let 𝑋 be an almost 𝐂𝑝-representation of 𝐺𝐾. Since (𝒞<0(𝐺𝐾), 𝒞≥0(𝐺𝐾))
is a torsion pair on 𝒞(𝐺𝐾) by Proposition 2.5.1, there exits a short exact
sequence

0 → 𝑋<0 → 𝑋 → 𝑋≥0 → 0, (3.5.1)

with 𝑋<0 a coeffective almost 𝐂𝑝-representation of 𝐺𝐾, and 𝑋≥0 an effective
almost 𝐂𝑝-representation of 𝐺𝐾. By Theorem 3.4.2, there exists a sheaf ℱ≥0

which is an object of Coh≥0𝑋FF(𝐺𝐾) and an isomorphism of almost 𝐂𝑝-repres-
entations of 𝐺𝐾

H0(𝑋FF, ℱ≥0) ⥲ 𝑋≥0.

Let
0 → ℱ>0 → ℱ≥0 → ℱ0 → 0, (3.5.2)

be the first step of the Harder–Narasimhan filtration of ℱ≥0, with ℱ>0 an
object of Coh>0𝑋FF(𝐺𝐾), and ℱ0 an object of Coh0𝑋FF(𝐺𝐾). By Theorem 3.4.2,
we have the almost 𝐂𝑝-representations of 𝐺𝐾

𝑋>0 = H0(𝑋FF, ℱ>0),

𝑋0 = H0(𝑋FF, ℱ0),

where 𝑋>0 is an object of 𝒞>0(𝐺𝐾), and 𝑋0 is a 𝑝-adic representation of 𝐺𝐾.
By Theorem 3.2.1, the group H1(𝑋FF, ℱ>0) is trivial, and the cohomology of
the short exact sequence (3.5.2) gives rise to the short exact sequence

0 → 𝑋>0 → 𝑋≥0 → 𝑋0 → 0. (3.5.3)
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Let𝑋≠0 be the reciprocal image of 𝑋>0 in𝑋 via the short exact sequence (3.5.1).
The combination of the short exact sequences (3.5.1) and (3.5.3) yields the
commutative diagram in 𝒞(𝐺𝐾) whose columns and rows are exact

0 0

0 𝑋<0 𝑋≠0 𝑋>0 0

0 𝑋<0 𝑋 𝑋≥0 0

𝑋0 𝑋0

0 0 .
←→ ←→

←→ ←→←→

⇐⇐

←→

←→

←→

←→

←→ ←→←→ ←→

←→

←→

←→

⇐ ⇐

←→ ←→

(3.5.4)

We prove that 𝑋≠0 is an object of 𝒞≠0(𝐺𝐾). Let 𝑉 be a 𝑝-adic represent-
ation of 𝐺𝐾. On the one hand, since 𝑋<0 is an object of 𝒞<0(𝐺𝐾) and the
category of 𝑝-adic representation 𝒞0(𝐺𝐾) is a subcategory of 𝒞≥0(𝐺𝐾) by
Proposition 2.5.1, and since the tuple (𝒞<0(𝐺𝐾), 𝒞≥0(𝐺𝐾)) is a torsion pair on
𝒞(𝐺𝐾) again by Proposition 2.5.1, there is no non-trivial map from 𝑋<0 to 𝑉.
On the other hand, the 𝐺𝐾-equivariant vector bundle ℰ(𝑉) associated with
𝑉 is semistable of slope 0 by Theorem 3.4.2, therefore, by Proposition 3.4.1
there is no non-trivial map from ℱ>0 to ℰ(𝑉), and thus, by the equivalence
of categories Coh≥0𝑋FF(𝐺𝐾) ⥲ 𝒞≥0(𝐺𝐾) from Theorem 3.4.2, there is no non-
trivial map from 𝑋>0 = H0(𝑋FF, ℱ>0) to 𝑉 = H0(𝑋FF, ℰ(𝑉)). Therefore,
using the short exact sequence

0 → 𝑋<0 → 𝑋≠0 → 𝑋>0 → 0

extracted from the diagram (3.5.4), we conclude that there is no non-trivial
map from 𝑋≠0 to 𝑉, and hence, 𝑋≠0 is an object of 𝒞≠0(𝐺𝐾).

Finally, the existence of the short exact sequence

0 → 𝑋≠0 → 𝑋 → 𝑋0 → 0

extracted from the diagram (3.5.4) with 𝑋≠0 an object of 𝒞≠0(𝐺𝐾) and 𝑋0

an object of 𝒞0(𝐺𝐾) implies that the second property in the Definition 2.4.1
of a torsion pair is satisfied. ∎

We will also need the following.

Lemma 3.5.3. If 𝑋<0 is a coeffective almost 𝐂𝑝-representation of 𝐺𝐾, then
there exists a short exact sequence in 𝒞(𝐺𝐾)

0 → 𝑌>0 → 𝑍+∞ → 𝑋<0 → 0,

with 𝑌>0 an object of 𝒞>0(𝐺𝐾), and 𝑍+∞ an object of 𝒞+∞(𝐺𝐾).
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Proof. By Theorem 3.4.2, there exists an object ℱ of Coh<0𝑋FF(𝐺𝐾) and an
isomorphism of almost 𝐂𝑝-representations

H1(𝑋FF, ℱ) ⥲ 𝑋<0.

For 𝑛 ∈ 𝐍, the Harder–Narasimhan twist ℱ(𝑛)HN of ℱ fits into the short
exact sequence

0 → ℱ → ℱ(𝑛)HN →ℋ(𝑛) → 0, (3.5.5)

withℋ(𝑛) the torsion𝐺𝐾-equivariant coherent sheaf (0, 𝑡−𝑛ℱ+
dR/ℱ

+
dR). Moreover,

for 𝑛 sufficiently large, the Harder–Narasimhan slopes of ℱ(𝑛)HN are all> 0
by Proposition 3.3.1. Hence, by Theorem 3.2.1 and Theorem 3.4.2, the short
exact sequence (3.5.5) induces a short exact sequence

0 → H0(𝑋FF, ℱ(𝑛)HN) → H0(𝑋FF,ℋ(𝑛)) → H1(𝑋FF, ℱ) → 0,

andH0(𝑋FF, ℱ(𝑛)HN) is an object of 𝒞>0(𝐺𝐾), andH0(𝑋FF,ℋ(𝑛)) is an object
of 𝒞+∞(𝐺𝐾). ∎

3.6 de Rham vector bundles
We briefly recall the definition of de Rham vector bundles over the Fargues–
Fontaine curve [13].

LetMod𝐾 be the category of finite dimensional 𝐾-vector spaces. There
is a functor

Rep𝐁dR
(𝐺𝐾) → Mod𝐾

𝑀dR ↦ 𝑀𝐺𝐾
dR ,

(3.6.1)

which admits a right adjoint

Mod𝐾 → Rep𝐁dR
(𝐺𝐾)

𝐷 ↦ 𝐁dR ⊗𝐾 𝐷.
(3.6.2)

A 𝐁dR-representation𝑀dR of 𝐺𝐾 is flat if dim𝐁dR 𝑀dR = dim𝐾𝑀
𝐺𝐾
dR . Let

Repfl.𝐁dR
(𝐺𝐾) be the full subcategory of Rep𝐁dR

(𝐺𝐾) of flat 𝐁dR-representation
of 𝐺𝐾. Then the functor (3.6.1) induces an equivalence of categories

Repfl.𝐁dR
(𝐺𝐾) ⥲ Mod𝐾,

of which the functor (3.6.2) is a quasi-inverse.
Let Fil𝐾 be the category of filtered𝐾-vector spaces, that is, the category of

finite dimensional𝐾-vector space equippedwith a decreasing exhaustive and
separated filtration by 𝐾-vector subspaces. The weights of a filtered 𝐾-vector
space (𝐷,Fil𝐷) are the integers 𝑛 ∈ 𝐙 such that Fil−𝑛𝐷/Fil−𝑛+1𝐷 ≠ 0, and
the multiplicity of a weight 𝑛 is the dimension dim𝐾 Fil

−𝑛𝐷/Fil−𝑛+1𝐷.
Let Repfree𝐁+

dR
(𝐺𝐾) be the full subcategory of Rep𝐁+

dR
(𝐺𝐾) of 𝐁+dR-represent-

ation of 𝐺𝐾 whose underlying 𝐁+dR-module is free. There is a functor

Repfree𝐁+
dR
(𝐺𝐾) → Fil𝐾

𝑀+
dR ↦ (𝑀𝐺𝐾

dR , {(𝑡𝑛𝑀
+
dR)𝐺𝐾}𝑛∈𝐙)

(3.6.3)
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which admits a right adjoint

Fil𝐾 → Repfree𝐁+
dR
(𝐺𝐾)

(𝐷,Fil𝐷) ↦ ∑
𝑛∈𝐙

Fil𝑛 𝐁dR ⊗𝐾 Fil
−𝑛𝐷. (3.6.4)

A free 𝐁+dR-representation𝑀
+
dR of 𝐺𝐾 is generically flat if the 𝐁dR-repres-

entation𝑀dR is flat. Let Rep
g.fl.
𝐁+
dR
(𝐺𝐾) be the full subcategory of Repfree𝐁+

dR
(𝐺𝐾)

of generically flat 𝐁+dR-representation of 𝐺𝐾.

Theorem 3.6.1 (Fargues–Fontaine). The functor (3.6.3) induces an equival-
ence of categories

Repg.fl.𝐁+
dR
(𝐺𝐾) ⥲ Fil𝐾,

of which the functor (3.6.4) is a quasi-inverse.

There is a functor

DdR ∶ Bun𝑋FF(𝐺𝐾) → Fil𝐾
ℰ ↦ (DdR(ℰ),FilDdR(ℰ)),

defined as the composition of the functor (3.6.3) with the functor

Bun𝑋FF(𝐺𝐾) → Repfree𝐁+
dR
(𝐺𝐾)

ℰ ↦ ℰ+dR.

A 𝐺𝐾-equivariant vector bundle ℰ is de Rham if ℰ+dR is generically flat,
or equivalently, if dim𝐾DdR(ℰ) = rankℰ. The Hodge–Tate weights of a de
Rhamvector bundleℰ are theweights ofDdR(ℰ). Wedenote byBun𝑋FF(𝐺𝐾)dR
the full subcategory of Bun𝑋FF(𝐺𝐾) of𝐺𝐾-equivariant deRhamvector bundles
over 𝑋FF.
Remark 3.6.2. Thedefinition of deRhamvector bundles andProposition 3.1.2
implies the following characterisation of deRhamvector bundles. A𝐺𝐾-equivari-
ant coherent sheaf ℰ is a de Rham vector bundle if and only if ℰ+dR is gener-
ically flat.

Proposition 3.6.3. Let

0 → ℰ′ → ℰ → ℰ″ → 0

be a short exact sequence of 𝐺𝐾-equivariant vector bundles over 𝑋FF. If ℰ is
de Rham, then ℰ′ and ℰ″ are de Rham. Moreover, the set of the Hodge–Tate
weights of ℰ is the union of the sets of the Hodge–Tate weights of ℰ′ and ℰ″.

Remark 3.6.4. The composition of functors

Rep𝐐𝑝
(𝐺𝐾) → Fil𝐾

𝑉 ↦ DdR(ℰ(𝑉))

is the usual DdR functor defined by Fontaine [17]. In particular, a 𝑝-adic
representation𝑉 is de Rham if and only if the vector bundle ℰ(𝑉) is de Rham.
We will write DdR(𝑉) instead of DdR(ℰ(𝑉)).
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4 Cohomology of perfectoid fields

4.1 Cohomology of almost 𝐂𝑝-representations

Let 𝐿 be an algebraic extension of 𝐾. If �̂� is a perfectoid field, as a con-
sequence of the classification of 𝐺𝐿-equivariant coherent sheaves over 𝑋FF

alreadymentioned inTheorem3.2.3, Fargues andFontaine [13, Remarque 9.4.2]
have obtained the following.

Theorem4.1.1 (Fargues–Fontaine). Letℱ be a𝐺𝐿-equivariant coherent sheaf
over 𝑋FF whose Harder–Narasimhan slopes are all > 0. If �̂� is a perfectoid
field, then

Ext1Coh𝑋FF(𝐺𝐾)(𝒪𝑋FF, ℱ) ⥲ H1(𝐿,H0(𝑋FF, ℱ)) = 0.

The combination of Theorem 3.4.2 and Theorem 4.1.1 immediately im-
plies the following.

Corollary 4.1.2. Let 𝑋>0 be an almost𝐂𝑝-representation which is an object of
the subcategory 𝒞>0(𝐺𝐾). If �̂� is a perfectoid field, then the groupH1(𝐿, 𝑋>0)
is trivial.

We will use the following repeatedly.

Proposition 4.1.3. The 𝑝-cohomological dimension of a perfectoid field of
residue characteristic 𝑝 is ≤ 1.

Proof. Let 𝑘 be a perfectoid field of residue characteristic 𝑝. On the one
hand, the tilt 𝑘♭ of 𝑘 is a perfectoid field of characteristic 𝑝 whose absolute
Galois group 𝐺𝑘♭ is canonically isomorphic to 𝐺𝑘 ([30, §3]). On the other
hand, the 𝑝-cohomological dimension of a field characteristic 𝑝 is ≤ 1 ([32,
II §2.2 Proposition 3]). ∎

Lemma 4.1.4. Let 𝑋 be a 𝑝-adic Banach representation of 𝐺𝐾, and let𝒳 be a
𝐺𝐾-stable lattice in 𝑋. If the 𝑝-cohomological dimension of 𝐿 is ≤ 1, then, for
each integer 𝑛 > 1, the groupsH𝑛(𝐿,𝒳) andH𝑛(𝐿, 𝑋) are trivial.

Proof. Recall [23, §2] that, since 𝒳 is complete and separated for the 𝑝-adic
topology, for each 𝑛 ∈ 𝐍, there is a short exact sequence

0 → lim←−−
1H𝑛−1(𝐿,𝒳/𝑝𝑖𝒳) → H𝑛(𝐿,𝒳) → lim←−−H

𝑛(𝐿,𝒳/𝑝𝑖𝒳) → 0,

where we set H−1(𝐿,𝒳/𝑝𝑖𝒳) = 0. Moreover, for each 𝑖 ∈ 𝐍, the short exact
sequence

0 → 𝑝𝑖𝒳/𝑝𝑖+1𝒳 → 𝒳/𝑝𝑖+1𝒳 → 𝒳/𝑝𝑖𝒳 → 0

induces an exact sequence

H1(𝐿,𝒳/𝑝𝑖+1𝒳) → H1(𝐿,𝒳/𝑝𝑖𝒳) → H2(𝐿, 𝑝𝑖𝒳/𝑝𝑖+1𝒳).

By hypothesis, for each integers 𝑛 > 1 and 𝑖 ∈ 𝐍, the groups H𝑛(𝐿,𝒳/𝑝𝑖𝒳)
and H𝑛(𝐿, 𝑝𝑖𝒳/𝑝𝑖+1𝒳) are trivial, which implies that:

• for each integer 𝑛 > 1, the group lim←−−H
𝑛(𝐿,𝒳/𝑝𝑖𝒳) is trivial,
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• for each integer 𝑛 > 2, the group lim←−−
1H𝑛−1(𝐿,𝒳/𝑝𝑖𝒳) is trivial,

• for each 𝑖 ∈ 𝐍, themapH1(𝐿,𝒳/𝑝𝑖+1𝒳) → H1(𝐿,𝒳/𝑝𝑖𝒳) is surjective,
and thus, the group lim←−−

1H1(𝐿,𝒳/𝑝𝑖𝒳) is also trivial.

Therefore, for each integer 𝑛 > 1, the group H𝑛(𝐿,𝒳) is trivial.
Since 𝑋/𝒳 is discrete, the short exact sequence

0 → 𝒳 → 𝑋 → 𝑋/𝒳 → 0

induces a long exact sequence

⋯→ H𝑛(𝐿,𝒳) → H𝑛(𝐿, 𝑋) → H𝑛(𝐿, 𝑋/𝒳) → H𝑛+1(𝐿,𝒳) → ⋯ .

For each integer 𝑛 > 1, we have proved that the groupH𝑛(𝐿,𝒳) is trivial, and
by hypothesis, the group H𝑛(𝐿, 𝑋/𝒳) is trivial. Therefore, for each integer
𝑛 > 1, the group H𝑛(𝐿, 𝑋) is trivial. ∎

Remark 4.1.5. A short exact sequence in 𝒞(𝐺𝐾)

0 → 𝑍 → 𝑋 → 𝑌 → 0 (4.1.1)

induces a long exact sequence

⋯→ H𝑛(𝐿, 𝑍) → H𝑛(𝐿, 𝑋) → H𝑛(𝐿, 𝑌) → H𝑛+1(𝐿, 𝑍) → ⋯ .

Indeed, by Theorem 2.1.1, the category 𝒞(𝐺𝐾) is an abelian subcategory of
ℬ(𝐺𝐾). In particular, eachmorphismof Banach spaces in the sequence (4.1.1)
is strict. Moreover, there exists a section, as topological spaces, of the surject-
ivemorphism𝑋 → 𝑌 (see for instance [10, Proposition I.1.5 (iii)]). Therefore,
the short exact sequence (4.1.1) induces long exact sequences in Galois co-
homology [34, §2].

Proposition 4.1.6. Let 𝑋 be an almost 𝐂𝑝-representation of 𝐺𝐾. If �̂� is a
perfectoid field, then the short exact sequence

0 → 𝑋≠0 → 𝑋 → 𝑋0 → 0

induces an isomorphism

H1(𝐿, 𝑋) ⥲ H1(𝐿, 𝑋0).

Proof. The combination of Proposition 4.1.3, Lemma 4.1.4 and Remark 4.1.5
yields an exact sequence

H1(𝐿, 𝑋≠0) → H1(𝐿, 𝑋) → H1(𝐿, 𝑋0) → 0.

We prove that the group H1(𝐿, 𝑋≠0) is trivial. By Proposition 3.5.2, there
exists a short exact sequence

0 → 𝑋<0 → 𝑋≠0 → 𝑋>0 → 0, (4.1.2)
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with 𝑋<0 an object of 𝒞<0(𝐺𝐾), and 𝑋>0 an object of 𝒞>0(𝐺𝐾). By Proposi-
tion 4.1.3, Lemma 4.1.4 and Remark 4.1.5, the short exact sequence (4.1.2)
induces an exact sequence

H1(𝐿, 𝑋<0) → H1(𝐿, 𝑋≠0) → H1(𝐿, 𝑋>0) → 0. (4.1.3)

Moreover, by Lemma 3.5.3, there exists a short exact sequence

0 → 𝑌>0 → 𝑍+∞ → 𝑋<0 → 0, (4.1.4)

with 𝑌>0 an object of 𝒞>0(𝐺𝐾), and 𝑍+∞ an object of 𝒞+∞(𝐺𝐾). Again
by Proposition 4.1.3, Lemma 4.1.4 and Remark 4.1.5, the short exact se-
quence (4.1.4) induces an exact sequence

H1(𝐿, 𝑌>0) → H1(𝐿, 𝑍+∞) → H1(𝐿, 𝑋<0) → 0. (4.1.5)

Finally, by Corollary 4.1.2, the groupsH1(𝐿, 𝑍+∞) andH1(𝐿, 𝑋>0) are trivial.
Thus, using the exact sequences (4.1.3) and (4.1.5), we conclude that the
groups H1(𝐿, 𝑋<0) and H1(𝐿, 𝑋≠0) are trivial. ∎

Lemma 4.1.7. Let
0 → 𝑍 → 𝑋 → 𝑌 → 0

be a short exact sequence in 𝒞(𝐺𝐾), and let 𝒵 be a 𝐺𝐾-stable lattice in 𝑍. If
the 𝑝-cohomological dimension of 𝐿 is ≤ 1, then the short exact sequence of
topological 𝐺𝐾-modules

0 → 𝒵 → 𝑋 → 𝑋/𝒵 → 0

induces a surjective map

H1(𝐿, 𝑋) → H1(𝐿, 𝑋/𝒵) → 0

Proof. We consider the diagram of topological 𝐺𝐾-modules whose rows and
columns are exact

0 0

𝒵 𝒵

0 𝑍 𝑋 𝑌 0

0 𝑍/𝒵 𝑋/𝒵 𝑌 0

0 0 .

←→ ←→
⇐ ⇐

←→ ←→

←→ ← →

←→ 𝑔

←→
𝑓

←→

←→

⇐⇐
←→ ←→

←→

←→
𝑓′

←→

←→

(4.1.6)

The maps 𝑓, 𝑓′ and 𝑔 each admits a continuous section as morphisms of
topological spaces. Hence, by Lemma 4.1.4, the diagram (4.1.6) induces the
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diagram whose rows and columns are exact

𝑌𝐺𝐿 H1(𝐿, 𝑍) H1(𝐿, 𝑋) H1(𝐿, 𝑌) 0

𝑌𝐺𝐿 H1(𝐿, 𝑍/𝒵) H1(𝐿, 𝑋/𝒵) H1(𝐿, 𝑌) 0

0 ,

←→

⇐⇐

← →

←→

←→

←→

←→

⇐⇐

←→ ←→

←→

←→ ←→

from which the statement follows. ∎

The combination of Proposition 4.1.3, Proposition 4.1.6 and Lemma 4.1.7
implies the following.

Corollary 4.1.8. Let
0 → 𝑍 → 𝑋 → 𝑌 → 0

be a short exact sequence in 𝒞(𝐺𝐾), and let 𝒵 be a 𝐺𝐾-stable lattice in 𝑍. Let
𝒵(0) be the image of 𝒵 in 𝑋0, and let𝒵(≠0) = 𝒵∩𝑋≠0. If �̂� is a perfectoid field,
then the short exact sequence of topological 𝐺𝐾-modules

0 → 𝑋≠0/𝒵(≠0) → 𝑋/𝒵 → 𝑋0/𝒵(0) → 0

induces an isomorphism

H1(𝐿, 𝑋/𝒵) ⥲ H1(𝐿, 𝑋0/𝒵(0)).

Moreover, for each integer 𝑛 > 1, the groupH𝑛(𝐿, 𝑋/𝒵) is trivial.

4.2 Cohomology of maximal discrete Galois submodules
Notation 4.2.1. If 𝑀 is a topological 𝐺𝐾-module, then we denote by𝑀𝛿 the
discrete 𝐺𝐾-module

𝑀𝛿 = lim−−→
res,𝐾′

H0(𝐾′,𝑀),

where 𝐾′ runs over all the finite extensions of 𝐾, and the transition morph-
isms are the restriction maps.

Let
0 → 𝑍 → 𝑋 → 𝑌 → 0

be a short exact sequence in 𝒞(𝐺𝐾), and let 𝒵 be a 𝐺𝐾-stable lattice in 𝑍.

Lemma 4.2.2. The short exact sequence of topological 𝐺𝐾-modules

0 → 𝑍/𝒵 → 𝑋/𝒵 → 𝑌 → 0

induces a short exact sequence of discrete 𝐺𝐾-modules

0 → 𝑍/𝒵 → (𝑋/𝒵)𝛿 → 𝑌𝛿 → 0.
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In particular, there is a commutative diagram of topological 𝐺𝐾-modules with
exact rows

0 𝑍/𝒵 𝑋/𝒵 𝑌 0

0 𝑍/𝒵 (𝑋/𝒵)𝛿 𝑌𝛿 0.

←→ ←→ ← → ←→

←→ ←→

⇐ ⇐

←→

← →

←→

← →

Proof. The short exact sequence of topological 𝐺𝐾-modules

0 → 𝑍/𝒵 → 𝑋/𝒵 → 𝑌 → 0

induces a long exact sequence for each finite extension 𝐾′ of 𝐾

0 → H0(𝐾′, 𝑍/𝒵) → H0(𝐾′, 𝑋/𝒵) → H0(𝐾′, 𝑌) → H1(𝐾′, 𝑍/𝒵) → ⋯ .
(4.2.1)

The long exact sequences (4.2.1) yields the long exact sequence

0 → (𝑍/𝒵)𝛿 → (𝑋/𝒵)𝛿 → 𝑌𝛿 → lim−−→
res,𝐾′

H1(𝐾′, 𝑍/𝒵) → ⋯ ,

where 𝐾′ runs over all the finite extensions of 𝐾, and the transition morph-
isms are the restrictionmaps. Since𝑍/𝒵 is a discrete𝐺𝐾-module, we have [32,
I §2.2 Proposition 8]

lim−−→
res,𝐾′

H𝑛(𝐾′, 𝑍/𝒵) = {
(𝑍/𝒵)𝛿 = 𝑍/𝒵 if 𝑛 = 0,
0 if 𝑛 > 0.

∎

Let 𝐿 be an algebraic extension of 𝐾.

Lemma 4.2.3. The short exact sequence of discrete 𝐺𝐾-modules

0 → 𝑍/𝒵 → (𝑋/𝒵)𝛿 → 𝑌𝛿 → 0

induces an exact sequence

0 H0(𝐿, 𝑍/𝒵) H0(𝐿, (𝑋/𝒵)𝛿) H0(𝐿, 𝑌𝛿)

H1(𝐿, 𝑍/𝒵) H1(𝐿, (𝑋/𝒵)𝛿) 0 ,

←→ ←→ ←→ ←

→ ←→ ← →

and, for each integer 𝑛 > 1, an isomorphism

H𝑛(𝐿, 𝑍/𝒵) ⥲ H𝑛(𝐿, (𝑋/𝒵)𝛿).

Proof. The short exact sequence of discrete 𝐺𝐾-modules

0 → 𝑍/𝒵 → (𝑋/𝒵)𝛿 → 𝑌𝛿 → 0

induces a long exact sequence

⋯→ H𝑛(𝐿, 𝑍/𝒵) → H𝑛(𝐿, (𝑋/𝒵)𝛿) → H𝑛(𝐿, 𝑌𝛿) → H𝑛+1(𝐿, 𝑍/𝒵) → ⋯ .

Furthermore, since 𝑌𝛿 is a uniquely divisible discrete 𝐺𝐾-module, for each
integer 𝑛 ≥ 1, the group H𝑛(𝐿, 𝑌𝛿) is trivial since it is torsion [32, I §2.2
Corollaire 3] and uniquely divisible. ∎
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By Lemma 4.2.2 and Lemma 4.2.3, there exists a morphism

𝜉 ∶ H1(𝐿, (𝑋/𝒵)𝛿) → H1(𝐿, 𝑋/𝒵),

and a commutative diagram with exact rows

𝑌𝐺𝐿 H1(𝐿, 𝑍/𝒵) H1(𝐿, 𝑋/𝒵) H1(𝐿, 𝑌)

𝑌𝐺𝐿
𝛿 H1(𝐿, 𝑍/𝒵) H1(𝐿, (𝑋/𝒵)𝛿) 0.

←→ ←→ ←→

←→

← →

←→

⇐ ⇐

← →

← →𝜉 ← → (4.2.2)

In particular, the map 𝜉 induces a morphism

H1(𝐿, (𝑋/𝒵)𝛿) → Ker (H1(𝐿, 𝑋/𝒵) → H1(𝐿, 𝑌)) .

Note thatKer (H1(𝐿, 𝑋/𝒵) → H1(𝐿, 𝑌)) is the torsion subgroup ofH1(𝐿, 𝑋/𝒵).
We consider 𝑌𝐺𝐿 endowed with the subspace topology from 𝑌.

Proposition 4.2.4. If (𝑌𝛿)𝐺𝐿 is dense in 𝑌𝐺𝐿, then the map 𝜉 induces an
isomorphism

H1(𝐿, (𝑋/𝒵)𝛿) ⥲ Ker (H1(𝐿, 𝑋/𝒵) → H1(𝐿, 𝑌)) .

Proof. Recall [29, Appendix A] that if 𝐺 is a locally compact and separated
topological group, and if 𝑀 is a topological 𝐺-module, then the compact-
open topology on the continuous cochains induces a structure of topological
groups on each abelian group H𝑛(𝐺,𝑀), 𝑛 ∈ 𝐍, which satisfy the following
properties.

1. If
0 → 𝑀′ → 𝑀 → 𝑀″ → 0

is a short exact sequence of topological 𝐺-modules such that the to-
pology of 𝑀′ is the subspace topology from𝑀, the topology of 𝑀″ is
the quotient topology from𝑀, and there exists a continuous section
of the projection of 𝑀 on𝑀″ as topological space, then it induces a
sequence of topological groups

⋯→ H𝑛(𝐺,𝑀′) → H𝑛(𝐺,𝑀) → H𝑛(𝐺,𝑀″) → H𝑛+1(𝐺,𝑀′) → ⋯

whose underlying sequence of abelian groups is exact.

2. If 𝐺 is compact and𝑀 is a discrete 𝐺-module, then, for each 𝑛 ∈ 𝐍,
the topological group H𝑛(𝐿,𝑀) is discrete.

Therefore, we can consider the top exact sequence

𝑌𝐺𝐿 → H1(𝐿, 𝑍/𝒵) → H1(𝐿, 𝑋/𝒵) → H1(𝐿, 𝑌)

of the diagram (4.2.2) as a sequence of topological abelian groups in which
the groupH1(𝐿, 𝑍/𝒵) is discrete. If 𝑌𝐺𝐿

𝛿 is dense in 𝑌𝐺𝐿, then, by continuity,
the images of 𝑌𝐺𝐿

𝛿 and 𝑌𝐺𝐿 in the discrete group H1(𝐿, 𝑍/𝒵) coincides. We
conclude using the commutativity of the diagram (4.2.2). ∎
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The combination of Corollary 4.1.8 and Proposition 4.2.4 yields the
following.

Corollary 4.2.5. If �̂� is a perfectoid field and if (𝑌𝛿)𝐺𝐿 is dense in 𝑌𝐺𝐿, then
there exists a short exact sequence

0 → H1(𝐿, (𝑋/𝒵)𝛿) → H1(𝐿, 𝑋0/𝒵(0)) → H1(𝐿, 𝑌0) → 0.

5 Truncation of the Hodge–Tate filtration

Let Bun𝑋FF(𝐺𝐾)
≤0
dR be the full subcategory of Bun𝑋FF(𝐺𝐾)dR of de Rham

𝐺𝐾-equivariant vector bundles over 𝑋FF whose Hodge–Tate weights are all
≤ 0. In [29, §2], we have defined and studied the functor

𝜏≤0dR ∶ Bun𝑋FF(𝐺𝐾)dR → Bun𝑋FF(𝐺𝐾)
≤0
dR

ℰ ↦ ℰ+

which is a left adjoint to the forgetful functor fromBun𝑋FF(𝐺𝐾)
≤0
dR toBun𝑋FF(𝐺𝐾)dR,

and which associates with a vector bundle ℰ = (ℰe, ℰ+dR, 𝜄ℰ) the vector bundle

ℰ+ = (ℰe, ℰ+dR + 𝐁+dR ⊗𝐾 DdR(ℰ), 𝜄ℰ).

Let 𝑛 ≥ 1 be an integer. Let Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR be the full subcategory of

Bun𝑋FF(𝐺𝐾)dR of de Rham 𝐺𝐾-equivariant vector bundles over 𝑋FF whose
Hodge–Tate weights are all in the set 𝐙 ∖ [1, 𝑛]. In this section 5, we will
define and study the functor

𝜏≤0,>𝑛dR ∶ Bun𝑋FF(𝐺𝐾)dR → Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR

ℰ ↦ ℰ𝑛+

which is a left adjoint to the forgetful functor from Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR to

Bun𝑋FF(𝐺𝐾)dR, and which associates with a vector bundle ℰ = (ℰe, ℰ+dR, 𝜄ℰ)
the vector bundle

ℰ𝑛+ = (ℰe, ℰ+dR + 𝐁+dR ⊗𝐾 Fil
−𝑛DdR(ℰ), 𝜄ℰ).

The construction of the functor 𝜏≤0,>𝑛dR is similar to the one of 𝜏≤0dR . There-
fore, we will omit some details and refer the reader to [29]. In particular, this
section 5 purposefully follows the same structure as [29, §2] for the reader’s
convenience.

5.1 Modification of filtered vector spaces

Let 𝑛 ≥ 1 be an integer. Let Fil≤0,>𝑛𝐾 be the full subcategory of Fil𝐾 of filtered
𝐾-vector spaces whose weights are all in the set 𝐙 ∖ [1, 𝑛].

We define the functor

𝜏≤0,>𝑛Fil ∶ Fil𝐾 → Fil≤0,>𝑛𝐾

(𝐷,Fil𝐷) ↦ (𝐷,Fil+,𝑛𝐷)
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which associates with a filtered𝐾-vector space (𝐷,Fil𝐷) the filtered𝐾-vector
space (𝐷,Fil+,𝑛𝐷) where

Fil𝑖+,𝑛𝐷 =
⎧

⎨
⎩

Fil𝑖𝐷 if 𝑖 ≤ −𝑛
Fil−𝑛𝐷 if 𝑖 ∈ [−𝑛, 0]
Fil𝑖𝐷 if 𝑖 > 0.

Note that the identity map on 𝐷 induces a morphism of filtered 𝐾-vector
spaces 𝜂𝐷 ∶ (𝐷,Fil𝐷) → (𝐷,Fil+,𝑛𝐷).

Proposition 5.1.1. The functor 𝜏≤0,>𝑛Fil is exact and left adjoint to the forgetful
functor from Fil≤0,>𝑛𝐾 to Fil𝐾. Moreover, we have the following properties.

1. Let (𝐷,Fil𝐷) be a filtered 𝐾-vector space. The morphism 𝜂𝐷 is the uni-
versal morphism from (𝐷,Fil𝐷) to the forgetful functor from Fil≤0,>𝑛𝐾
to Fil𝐾.

2. There is a commutative diagram

Fil𝐾 Fil≤0,>𝑛𝐾

Mod𝐾 Mod𝐾,

←→
𝜏≤0,>𝑛Fil

←→ ←→

←→id

where the vertical arrows are the forgetful functor (𝐷,Fil𝐷) ↦ 𝐷, and
the bottom arrow is the identity functor.

Proof. The statement is proved similarly to [29, Proposition 2.1.4, Remark 2.1.3,
and Corollary 2.1.5]. ∎

Lemma 5.1.2. Let (𝐷,Fil𝐷) be a filtered 𝐾-vector space. Then

∑
𝑖∈𝐙

Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑖
+,𝑛𝐷 = (∑

𝑖∈𝐙
Fil𝑖 𝐁+dR ⊗𝐾 Fil

−𝑖𝐷) + 𝐁+dR ⊗𝐾 Fil
−𝑛𝐷.

Proof. The statement follows fromcomputations similar to [29, Lemma2.1.6].
By definition, we have

∑
𝑖∈𝐙

Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑖
+,𝑛𝐷 =∑

𝑖<0
Fil𝑖 𝐁+dR ⊗𝐾 Fil

−𝑖𝐷

+ ∑
𝑖∈[0,𝑛]

Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑛𝐷

+ ∑
𝑖≥𝑛

Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑖𝐷

On the one hand, since Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑖𝐷 ⊆ Fil𝑖 𝐁+dR ⊗𝐾 Fil

−𝑛𝐷 for each
𝑖 ∈ [0, 𝑛], we have

∑
𝑖∈𝐙

Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑖
+,𝑛𝐷 = ∑

𝑖∈𝐙
Fil𝑖 𝐁+dR ⊗𝐾 Fil

−𝑖𝐷

+ ∑
𝑖∈[0,𝑛]

Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑛𝐷.
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On the other hand, we have

∑
𝑖∈[0,𝑛]

Fil𝑖 𝐁+dR ⊗𝐾 Fil
−𝑛𝐷 = 𝐁+dR ⊗𝐾 Fil

−𝑛𝐷.

∎

Let Repg.fl.𝐁+
dR
(𝐺𝐾)≤0,>𝑛 be the subcategory of Rep

g.fl.
𝐁+
dR
(𝐺𝐾) equivalent to the

subcategory Fil≤0,>𝑛𝐾 of Fil𝐾 via the equivalence Rep
g.fl.
𝐁+
dR
(𝐺𝐾) ⥲ Fil𝐾 from

Theorem 3.6.1. By Lemma 5.1.2, the composition of the functor 𝜏≤0,>𝑛Fil with
the equivalences of categories Repg.fl.𝐁+

dR
(𝐺𝐾) ⥲ Fil𝐾 and Rep

g.fl.
𝐁+
dR
(𝐺𝐾)≤0,>𝑛 ⥲

Fil≤0,>𝑛𝐾 then yields a functor

𝜏≤0,>𝑛dR ∶ Repg.fl.𝐁+
dR
(𝐺𝐾) → Repg.fl.𝐁+

dR
(𝐺𝐾)≤0,>𝑛

𝑀+
dR ↦ 𝑀+

dR + 𝐁+dR ⊗𝐾 (𝑡−𝑛𝑀+
dR)𝐺𝐾.

Proposition 5.1.1 implies the following.

Proposition 5.1.3. The functor 𝜏≤0,>𝑛dR is exact and left adjoint to the forgetful
functor fromRepg.fl.𝐁+

dR
(𝐺𝐾)≤0,>𝑛 toRep

g.fl.
𝐁+
dR
(𝐺𝐾). Moreover, we have the following

properties.

1. Let𝑀+
dR be a generically flat 𝐁

+
dR-representation of 𝐺𝐾. The inclusion

morphism𝑀+
dR ⊂ 𝑀+

dR+𝐁
+
dR⊗𝐾 (𝑡−𝑛𝑀+

dR)𝐺𝐾 is the universal morphism
from𝑀+

dR to the forgetful functor from Repg.fl.𝐁+
dR
(𝐺𝐾)≤0,>𝑛 to Rep

g.fl.
𝐁+
dR
(𝐺𝐾).

2. There is a commutative diagram

Repg.fl.𝐁+
dR
(𝐺𝐾) Repg.fl.𝐁+

dR
(𝐺𝐾)≤0,>𝑛

Repfl.𝐁dR
(𝐺𝐾) Repfl.𝐁dR

(𝐺𝐾),

←→
𝜏≤0,>𝑛dR

←→ ←→

← →id

where the vertical arrows are the functor of extension of scalars, and the
bottom arrow is the identity functor.

5.2 Modification of de Rham vector bundles
Let 𝑛 ≥ 1 be an integer. Let Bun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR be the full subcategory of

Bun𝑋FF(𝐺𝐾)dR of 𝐺𝐾-equivariant de Rham vector bundles over 𝑋FF whose
Hodge–Tate weights are all in the set 𝐙 ∖ [1, 𝑛].

By Remark 3.6.2 and Proposition 5.1.3, the functor 𝜏≤0,>𝑛dR together with
the identity functor on Rep𝐁e

(𝐺𝐾) induces a functor

𝜏≤0,>𝑛HT ∶ Bun𝑋FF(𝐺𝐾)dR → Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR

ℰ ↦ ℰ𝑛+

which associates with a de Rham vector bundle ℰ = (ℰe, ℰ+dR, 𝜄ℰ) the de Rham
vector bundle

ℰ𝑛+ = (ℰe, ℰ+dR + 𝐁+dR ⊗𝐾 Fil
−𝑛DdR(ℰ), 𝜄ℰ).
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Proposition 5.2.1. The functor 𝜏≤0,>𝑛HT is exact and left adjoint to the forget-
ful functor from Bun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR to Bun𝑋FF(𝐺𝐾)dR. Moreover, we have the

following properties.

1. Let ℰ be a 𝐺𝐾-equivariant de Rham vector bundle. The inclusion map
ℰ → ℰ𝑛+ is the universal morphism from ℰ to the forgetful functor from
Bun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR to Bun𝑋FF(𝐺𝐾)dR.

2. The composition of the functor 𝜏≤0,>𝑛HT with the forgetful functor

Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR → Bun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR

𝜏≤0,>𝑛HT−−−−→ Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR

is isomorphic to the identity functor on Bun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR .

Proof. All statements except the last follow from Proposition 5.1.3. The last
statement is a formal consequence of the adjunction property of 𝜏≤0,>𝑛HT and
the fully faithfulness of the forgetful functor (see [25, IV §3 Theorem 1]). ∎

5.3 Hodge–Tate and Harder–Narasimhan filtrations
Let 𝑛 ≥ 1 be an integer. Let 𝑉 be a de Rham 𝑝-adic representation of 𝐺𝐾.
The vector bundle ℰ(𝑉) associated with 𝑉 is 𝐺𝐾-equivariant and de Rham,
and we denote its modification by 𝜏≤0,>𝑛dR by

ℰ𝑛+(𝑉) = (𝐁e ⊗𝐐𝑝 𝑉,𝐁
+
dR ⊗𝐐𝑝 𝑉 + 𝐁+dR ⊗𝐾 Fil

−𝑛DdR(𝑉), 𝜄ℰ(𝑉)).

The inclusion map of ℰ(𝑉) in ℰ𝑛+(𝑉) induces a short exact sequence in
Coh𝑋FF(𝐺𝐾)

0 → ℰ(𝑉) → ℰ𝑛+(𝑉) → ℱ𝑛
+ (𝑉) → 0, (5.3.1)

with

ℱ𝑛
+ (𝑉) = (0,

𝐁+dR ⊗𝐐𝑝 𝑉 + 𝐁+dR ⊗𝐾 Fil
−𝑛DdR(𝑉)

𝐁+dR ⊗𝐐𝑝 𝑉
) .

Lemma 5.3.1. The Harder–Narasimhan slopes of ℰ𝑛+(𝑉) are all ≥ 0.

Proof. The short exact sequence (5.3.1) induces the cohomological exact
sequence

H1(𝑋FF, ℰ(𝑉)) → H1(𝑋FF, ℰ+(𝑉)) → H1(𝑋FF, ℱ+(𝑉)) → 0. (5.3.2)

Since ℰ(𝑉) and ℱ+(𝑉) are semi-stable of slopes 0 and +∞ respectively, the
groups H1(𝑋FF, ℰ(𝑉)) and H1(𝑋FF, ℱ+(𝑉)) are trivial by Proposition 3.2.1.
Therefore, the exact sequence (5.3.2) forces the group H1(𝑋FF, ℰ+(𝑉)) to
vanish, and the lemma follows from another application of Proposition 3.2.1.

∎

Notation 5.3.2. We denote by

0 → 𝑉0,𝑛 → 𝑉 → 𝑉≤0,>𝑛 → 0

the short exact sequence of 𝑝-adic representations of 𝐺𝐾 where 𝑉≤0,>𝑛 is
the maximal quotient representation of 𝑉 whose Hodge–Tate weights are
all in the set 𝐙 ∖ [1, 𝑛].
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Lemma 5.3.3. There exists no non-trivial quotient of 𝑉0,𝑛 whose Hodge–Tate
weights all in 𝐙 ∖ [1, 𝑛].

Proof. Let𝑈 be a subrepresentation of 𝑉0,𝑛 such that theHodge–Tateweights
of 𝑉0,𝑛/𝑈 are all in 𝐙 ∖ [1, 𝑛]. Then there is a short exact sequence of 𝑝-adic
representation of 𝐺𝐾

0 → 𝑉0,𝑛/𝑈 → 𝑉/𝑈 → 𝑉≤0,>𝑛 → 0.

By Proposition 3.6.3, the representation 𝑉/𝑈 and its Hodge–Tate weights
are all in 𝐙 ∖ [1, 𝑛]. By maximality of 𝑉≤0,>𝑛, we then have 𝑈 = 𝑉0,𝑛. ∎

By Theorem 3.4.2, the short exact sequence of de Rham representations

0 → 𝑉0,𝑛 → 𝑉 → 𝑉≤0,>𝑛 → 0

induces a short exact sequence in Bun𝑋FF(𝐺𝐾)dR

0 → ℰ(𝑉0,𝑛) → ℰ(𝑉) → ℰ(𝑉≤0,>𝑛) → 0,

which in turns, by exactness of 𝜏≤0,>𝑛HT from Proposition 5.2.1, induces a
short exact sequence in Bun𝑋FF(𝐺𝐾)

≤0,>𝑛
dR

0 → ℰ𝑛+(𝑉0,𝑛) → ℰ𝑛+(𝑉) → ℰ𝑛+(𝑉≤0,>𝑛) → 0.

Proposition 5.3.4. The short exact sequence

0 → ℰ𝑛+(𝑉0,𝑛) → ℰ𝑛+(𝑉) → ℰ𝑛+(𝑉≤0,>𝑛) → 0

is the first step of the Harder–Narasimhan filtration of ℰ𝑛+(𝑉) with

ℰ𝑛+(𝑉≤0,>𝑛) = ℰ(𝑉≤0,>𝑛)

semistable of slope 0.

Proof. The statement is proved similarly to [29, Proposition 2.3.5 and Corol-
lary 2.3.6]. By Lemma 5.3.1, the Harder–Narasimhan slopes of each vector
bundle in the short exact sequences are all ≥ 0. Moreover, since the Hodge–
Tate weights of 𝑉≤0,>𝑛 are all in 𝐙 ∖ [1, 𝑛], by Proposition 5.2.1, we have
ℰ𝑛+(𝑉≤0,>𝑛) = ℰ(𝑉≤0,>𝑛) which is semistable of slope 0. By uniqueness
of the Harder–Narasimhan filtration, it remains to prove that the Harder–
Narasimhan slopes of ℰ𝑛+(𝑉0,𝑛) are all > 0.

Assume that 0 is a Harder–Narasimhan slope of ℰ𝑛+(𝑉0,𝑛), and letℋ be
the first step of the Harder–Narasimhan filtration of ℰ𝑛+(𝑉0,𝑛), that is, the
vector bundleℋ is semistable of slope 0 and there exists a surjective map

𝑓 ∶ ℰ𝑛+(𝑉0,𝑛) → ℋ → 0.

By Remark 3.2.2, the vector bundleℋ and the map 𝑓 are 𝐺𝐾-equivariant.
Sinceℋ is semistable of slope 0, there exists a 𝑝-adic representation𝑊 of
𝐺𝐾 such thatℋ ⥲ ℰ(𝑊) by Theorem 3.4.2. Moreover, by Proposition 3.6.3,
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the surjection 𝑓 implies thatℋ, and thus𝑊, is de Rham with Hodge–Tate
weights all in 𝐙 ∖ [1, 𝑛]. Therefore, we have

𝑓 ∈ HomBun𝑋FF(𝐺𝐾)
≤0,>𝑛
dR

(ℰ𝑛+(𝑉0,𝑛),ℋ) ⥲ HomBun𝑋FF(𝐺𝐾)dR(ℰ(𝑉0,𝑛),ℋ)

⥲ HomRep𝐐𝑝(𝐺𝐾)(𝑉0,𝑛,𝑊),

where the first isomorphism follows from the adjunction from Proposi-
tion 5.2.1, the second from the equivalence from Theorem 3.4.2.

By Lemma 5.3.3 and Proposition 3.6.3, the groupHomRep𝐐𝑝(𝐺𝐾)(𝑉0,𝑛,𝑊)
is trivial. In particular, themap 𝑓 is trivial, which contradicts the assumption
that 0 is a Harder–Narasimhan slope of ℰ𝑛+(𝑉0,𝑛). ∎

6 Bloch–Kato groups over perfectoid fields

6.1 The Bloch–Kato groups
We recall the definition of the Bloch–Kato groups [3, §3], and we define a
filtration on the exponential Bloch–Kato groups induced by the filtration of
𝐁dR.

Let 𝑉 be a 𝑝-adic representation of 𝐺𝐾. For each finite extension 𝐾′ of
𝐾, the exponential, finite and geometric Bloch–Kato groups are respectively
defined by

H1
𝑒(𝐾′, 𝑉) =Ker (H1(𝐾′, 𝑉) → H1(𝐾′, 𝐁e ⊗𝐐𝑝 𝑉)) ,

H1
𝑓(𝐾′, 𝑉) =Ker (H1(𝐾′, 𝑉) → H1(𝐾′, 𝐁cris ⊗𝐐𝑝 𝑉)) ,

H1
𝑔(𝐾′, 𝑉) =Ker (H1(𝐾′, 𝑉) → H1(𝐾′, 𝐁dR ⊗𝐐𝑝 𝑉)) .

Recall that the filtration of 𝐁dR induces a filtration on 𝐁e. We define a
filtration on the exponential Bloch–Kato groups as follows.

Definition 6.1.1. For each 𝑛 ∈ 𝐙, we set

Fil𝑛H1
𝑒(𝐾′, 𝑉) = {

Ker (H1(𝐾′, 𝑉) → H1(𝐾′,Fil𝑛 𝐁e ⊗𝐐𝑝 𝑉)) if 𝑛 ≤ 0,
0 if 𝑛 ≥ 0.

Let 𝑇 be a 𝐺𝐾-stable lattice in 𝑉. The short exact sequence of topological
𝐺𝐾-modules

0 → 𝑇 → 𝑉 → 𝑉/𝑇 → 0

induces an exact sequence

H1(𝐾′, 𝑇)
𝛼
−→ H1(𝐾′, 𝑉)

𝛽
−→ H1(𝐾′, 𝑉/𝑇).

For ∗ ∈ {𝑒, 𝑓, 𝑔}, the Bloch–Kato subgroups of H1(𝐾′, 𝑇) and H1(𝐾′, 𝑉/𝑇)
are respectively defined by

H1
∗(𝐾′, 𝑇) =𝛼−1 (H1

∗(𝐾′, 𝑉)) ,

H1
∗(𝐾′, 𝑉/𝑇) =𝛽 (H1

∗(𝐾′, 𝑉)) .
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Moreover, the exponential Bloch–Kato groups are equippedwith the induced
filtrations

Fil𝑛H1
𝑒(𝐾′, 𝑇) =𝛼−1 (Fil𝑛H1

𝑒(𝐾′, 𝑉)) ,

Fil𝑛H1
𝑒(𝐾′, 𝑉/𝑇) =𝛽 (Fil𝑛H1

𝑒(𝐾′, 𝑉)) .

Let 𝐿 be an algebraic extension of 𝐾. Recall that there is a natural iso-
morphism

H1(𝐿, 𝑉/𝑇) ⥲ lim−−→
res,𝐾′

H1(𝐾′, 𝑉/𝑇),

where 𝐾′ runs over all the finite extensions of 𝐾 contained in 𝐿, and the
transition morphisms are the restriction maps [32, I §2.2 Proposition 8]. For
each ∗ ∈ {𝑒, 𝑓, 𝑔}, the groupsH1

∗(𝐾′, 𝑉/𝑇) and the filtration Fil𝑛H1
𝑒(𝐾′, 𝑉/𝑇)

are compatible under the restriction maps, and the Bloch–Kato subgroups
of H1(𝐿, 𝑉/𝑇) are then defined by

H1
∗(𝐿, 𝑉/𝑇) = lim−−→

res,𝐾′
H1
∗(𝐾′, 𝑉/𝑇),

Fil𝑛H1
𝑒(𝐿, 𝑉/𝑇) = lim−−→

res,𝐾′
Fil𝑛H1

𝑒(𝐾′, 𝑉/𝑇),

where 𝐾′ runs over all the finite extensions of 𝐾 contained in 𝐿, and the
transition morphisms are the restriction maps.

6.2 Universal norms
Let 𝑉 be a 𝑝-adic representation of 𝐺𝐾. Let 𝑇 be a 𝐺𝐾-stable lattice in 𝑉. Let
𝐿 be an algebraic extension of 𝐾.

For 𝑖 ∈ 𝐍, the 𝑖-th Iwasawa cohomology group H𝑖
Iw(𝐾, 𝐿, 𝑇) of the exten-

sion 𝐿/𝐾 with coefficients in 𝑇 is defined by

H𝑖
Iw(𝐾, 𝐿, 𝑇) = lim←−−

cores,𝐾′
H𝑖(𝐾′, 𝑇),

where 𝐾′ runs over all the finite extensions of 𝐾 contained in 𝐿, and the
transition morphisms are the corestriction maps.

For each ∗ ∈ {𝑒, 𝑓, 𝑔}, the Bloch–Kato groups H1
∗(𝐾′, 𝑇) are compatible

under the corestriction maps. The modules of ∗-universal norms associated
with 𝑇 in the extension 𝐿/𝐾 are defined by

H1
Iw,∗(𝐾, 𝐿, 𝑇) = lim←−−

cores,𝐾′
H1
∗(𝐾′, 𝑇),

where 𝐾′ runs over all the finite extensions of 𝐾 contained in 𝐿, and the
transition morphisms are the corestriction maps.

Let 𝑉∗(1) = Hom𝐐𝑝(𝑉,𝐐𝑝(1)) be the Tate dual representation of 𝑉, and
let 𝑇∗(1) = Hom𝐙𝑝(𝑇, 𝐙𝑝(1)) be the 𝐺𝐾-stable lattice in 𝑉

∗(1) Tate dual of
𝑇. Recall that local Tate duality [32], for each finite extension 𝐾′ of 𝐾,

H1(𝐾′, 𝑉∗(1)/𝑇∗(1)) ×H1(𝐾′, 𝑇) → H2(𝐾′, 𝐐𝑝(1)/𝐙𝑝(1)) ≅ 𝐐𝑝/𝐙𝑝

induces a perfect pairing

H1(𝐿, 𝑉∗(1)/𝑇∗(1)) ×H1
Iw(𝐾, 𝐿, 𝑇) → 𝐐𝑝/𝐙𝑝.
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Proposition 6.2.1 (Bloch–Kato). If 𝑉 is de Rham, then, under local Tate
duality,

1. the orthogonal complement of H1
𝑒(𝐿, 𝑉∗(1)/𝑇∗(1)) isH1

Iw,𝑔(𝐾, 𝐿, 𝑇),

2. the orthogonal complement of H1
𝑓(𝐿, 𝑉∗(1)/𝑇∗(1)) isH1

Iw,𝑓(𝐾, 𝐿, 𝑇),

3. the orthogonal complement of H1
𝑔(𝐿, 𝑉∗(1)/𝑇∗(1)) isH1

Iw,𝑒(𝐾, 𝐿, 𝑇).

6.3 Comparison of the Bloch–Kato groups
Let 𝑉 be a 𝑝-adic representation of 𝐺𝐾, and let 𝑇 be a 𝐺𝐾-stable lattice in 𝑉.
For each finite extension 𝐾′ of 𝐾, let

Dcris,𝐾′(𝑉) = H0(𝐾′, 𝐁cris ⊗𝐐𝑝 𝑉).

Recall thatDcris,𝐾′(𝑉) is a finite dimensional 𝐾′
0-vector space equipped with

a map 𝜑 semilinear with respect to the absolute Frobenius on 𝐾′
0 (see [17,

§5.1]). For 𝑖 ∈ 𝐙, we set the finite dimensional 𝐐𝑝-vector space

Dcris,𝐾′(𝑉)𝜑=𝑝𝑖 = {𝑥 ∈ Dcris,𝐾′(𝑉), 𝜑(𝑥) = 𝑝𝑖 ⋅ 𝑥}.

Proposition 6.3.1. Let 𝑖 ∈ 𝐙. The dimension of the𝐐𝑝-vector spaceDcris,𝐾′(𝑉)𝜑=𝑝𝑖

is bounded independently of 𝐾′.

Proof. Let
Dpcris(𝑉) = lim−−→

res,𝐾′
H0(𝐾′, 𝐁cris ⊗𝐐𝑝 𝑉),

where 𝐾′ runs over all the finite extensions of 𝐾, and the transition morph-
isms are the restriction maps. ThenDpcris(𝑉) is a finite dimensional discrete
(𝜑, 𝐺𝐾)-module over 𝐐ur

𝑝 , that is, Dpcris(𝑉) is a finite dimensional 𝐐ur
𝑝 -vec-

tor space equipped with a map 𝜑 semilinear with respect to the absolute
Frobenius on 𝐐ur

𝑝 and a discrete action of 𝐺𝐾 commuting with 𝜑 (see [17,
§5.6]). We set

D̂pcris(𝑉) = �̂�ur
𝑝 ⊗𝐐ur

𝑝 Dpcris(𝑉).

Then (see [17, Remarque 4.4.10]), D̂pcris(𝑉) is a finite dimensional (𝜑, 𝐺𝐾)-mod-
ule over �̂�ur

𝑝 , and for each finite extension 𝐾′ of 𝐾, we have

Dcris,𝐾′(𝑉) = Dpcris(𝑉)𝐺𝐾′ = D̂pcris(𝑉)𝐺𝐾′ .

Hence, since the action of 𝐺𝐾 and 𝜑 commute, we have

Dcris,𝐾′(𝑉)𝜑=𝑝𝑖 = (D̂pcris(𝑉)𝜑=𝑝
𝑖)𝐺𝐾′ .

By the Dieudonné–Manin theorem [12, IV §4], there is an isomorphism of
𝜑-modules over �̂�ur

𝑝

D̂pcris(𝑉) ⥲⨁
𝑣∈𝐐

𝐸(𝑣)⊕𝑚𝑣,
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where 𝐸(𝑣) runs over the simple objects in the category of the 𝜑-modules
over �̂�ur

𝑝 , that is, if 𝑣 = 𝑠/𝑟 with 𝑠, 𝑟 ∈ 𝐍, 𝑟 > 0, and (𝑟, 𝑠) = 1, then
𝐸(𝑣) = �̂�ur

𝑝 ⊗𝐐𝑝 𝐐𝑝[𝑇]/(𝑇𝑟 − 𝑝𝑠) on which 𝜑 acts by multiplication by 𝑇
semilinear with respect to the absolute Frobenius on �̂�ur

𝑝 . We then have

D̂pcris(𝑉)𝜑=𝑝
𝑖 ⥲ (𝐸(𝑖)𝜑=𝑝𝑖)⊕𝑚𝑖,

and 𝐸(𝑖)𝜑=𝑝𝑖 is a finite dimensional 𝐐𝑝-vector space [12, IV §2 and §3]. ∎

Proposition 6.3.2 (Bloch–Kato). Let 𝐾′ be a finite extension of 𝐾. If 𝑉 is de
Rham, then we have

dim𝐐𝑝 H
1
𝑓(𝐾′, 𝑉)/H1

𝑒(𝐾′, 𝑉) = dim𝐐𝑝 Dcris,𝐾′(𝑉)𝜑=1,

dim𝐐𝑝 H
1
𝑔(𝐾′, 𝑉)/H1

𝑓(𝐾′, 𝑉) = dim𝐐𝑝 Dcris,𝐾′(𝑉)𝜑=𝑝−1.

Proof. Bloch and Kato [3, Corollary 3.8.4] have proved that there exists an
isomorphism of 𝐐𝑝-vector spaces

H1
𝑓(𝐾′, 𝑉)/H1

𝑒(𝐾′, 𝑉) ⥲ Dcris,𝐾′(𝑉)/(1 − 𝜑)Dcris,𝐾′(𝑉),

which implies the first statement. By the duality from Proposition 6.2.1, the
first statement yields

dim𝐐𝑝 H
1
𝑔(𝐾′, 𝑉)/H1

𝑓(𝐾′, 𝑉) = dim𝐐𝑝 H
1
𝑓(𝐾′, 𝑉∗(1))/H1

𝑒(𝐾′, 𝑉∗(1))

= dim𝐐𝑝 Dcris,𝐾′(𝑉∗(1))𝜑=1,

and the duality of 𝜑-modules [17, §5.1]

Dcris,𝐾′(𝑉) ⊗𝐾′
0
Dcris,𝐾′(𝑉∗(1)) ⥲ Dcris,𝐾′(𝐐𝑝(1)),

implies the equality

dim𝐐𝑝 Dcris,𝐾′(𝑉∗(1))𝜑=1 = dim𝐐𝑝 Dcris,𝐾′(𝑉)𝜑=𝑝−1.

∎

Proposition 6.3.3. Let 𝐿 be an algebraic extension of 𝐾. If 𝑉 is de Rham, then
the Pontryagin dual of the quotient

H1
𝑔(𝐿, 𝑉/𝑇)/H1

𝑒(𝐿, 𝑉/𝑇)

is a free 𝐙𝑝-module of finite rank bounded independently of 𝐿.

Proof. By Proposition 6.2.1, the Pontryagin dual of the discrete 𝐙𝑝-module

H1
𝑔(𝐿, 𝑉/𝑇)/H1

𝑒(𝐿, 𝑉/𝑇)

is the compact 𝐙𝑝-module

H1
Iw,𝑔(𝐾, 𝐿, 𝑇∗(1))/H1

Iw,𝑒(𝐾, 𝐿, 𝑇∗(1)).
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By definition, there exists an injective map

0 → H1
Iw,𝑔(𝐾, 𝐿, 𝑇∗(1))/H1

Iw,𝑒(𝐾, 𝐿, 𝑇∗(1)) → lim←−−
cores,𝐾′

H1
𝑔(𝐾′, 𝑉∗(1))/H1

𝑒(𝐾′, 𝑉∗(1)),

(6.3.1)
where 𝐾′ runs over all the finite extensions of 𝐾 contained in 𝐿, and the
transition morphisms are the corestriction maps.

By Proposition 6.3.1 and Proposition 6.3.2, the dimension of the 𝐐𝑝-vec-
tor spaceH1

𝑔(𝐾′, 𝑉∗(1))/H1
𝑒(𝐾′, 𝑉∗(1)) is bounded independently of 𝐾′. There-

fore, the 𝐐𝑝-vector space lim←−−H
1
𝑔(𝐾′, 𝑉∗(1))/H1

𝑒(𝐾′, 𝑉∗(1)) is finite dimen-
sional, and we conclude using the map (6.3.1). ∎

6.4 Universal extensions and groups of points
We recall the definition and properties of universal objects in 𝒞(𝐺𝐾) and
of the groups of points both associated with a 𝑝-adic representation by
Fontaine [18, §8].

Let 𝑉 be a 𝑝-adic representation of 𝐺𝐾. The tangent space 𝑡𝑉 associated
with 𝑉 is the 𝐾-vector space

𝑡𝑉 = ((𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉)
𝐺𝐾,

which is equipped with the filtration by 𝐾-vector subspaces

Fil𝑛 𝑡𝑉 = {
((Fil𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉)

𝐺𝐾 if 𝑛 ≤ 0
0 if 𝑛 > 0.

If 𝑉 is de Rham, then they are isomorphisms

DdR(𝑉)/Fil
0DdR(𝑉) ⥲ 𝑡𝑉,

and, for each 𝑛 ∈ 𝐍,

Fil−𝑛DdR(𝑉)/Fil
0DdR(𝑉) ⥲ Fil−𝑛 𝑡𝑉.

We set

𝑡𝑉(�̅�𝑝) = ((𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉)𝛿,

Fil−𝑛 𝑡𝑉(�̅�𝑝) = ((Fil−𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉)𝛿.

Let ̂𝑡𝑉(�̅�𝑝) be the topological closure of the image of 𝑡𝑉(�̅�𝑝) in (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉,
and, for each 𝑛 ∈ 𝐍, let Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) be the topological closure of the image
of Fil−𝑛 𝑡𝑉(�̅�𝑝) in (Fil

−𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉.
Let 𝑡𝑉(𝐁+dR) = 𝑡𝑉 ⊗𝐾 𝐁+dR, and, for each 𝑛 ∈ 𝐍, let Fil−𝑛 𝑡𝑉(𝐁+dR) =

Fil−𝑛 𝑡𝑉 ⊗𝐾 𝐁+dR. Note that there are natural morphisms of 𝐁
+
dR-modules by

extension of scalars

𝑡𝑉(𝐁+dR) → (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉

and, for each 𝑛 ∈ 𝐍,

Fil−𝑛 𝑡𝑉(𝐁+dR) → (Fil−𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉.
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A trivial torsion 𝐁+dR-representation of 𝐺𝐾 (respectively a trivial 𝐁𝑛-repres-
entation of𝐺𝐾) is a torsion𝐁+dR-representation of𝐺𝐾 isomorphic to⨁𝑖∈𝐍 𝐁

⊕𝑚𝑖
𝑖

(respectively⨁𝑖∈[1,𝑛] 𝐁
⊕𝑚𝑖
𝑖 ), for some integers𝑚𝑖.

Proposition 6.4.1. Themodules associated with the tangent space of 𝑉 satisfy
the following properties.

1. (a) There is an isomorphism of discrete 𝐺𝐾-modules

𝑡𝑉(�̅�𝑝) ⥲ 𝑡𝑉 ⊗𝐾 �̅�𝑝

(b) The module ̂𝑡𝑉(�̅�𝑝) is the maximal trivial torsion 𝐁+dR-subrepres-
entation of (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉.

(c) There is an isomorphism of torsion 𝐁+dR-representations of 𝐺𝐾

̂𝑡𝑉(�̅�𝑝) ⥲ Im (𝑡𝑉(𝐁+dR) → (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉) .

(d) If 𝑉 is de Rham, then there exists an isomorphism of 𝐁+dR-repres-
entations of 𝐺𝐾

̂𝑡𝑉(�̅�𝑝) ⥲⨁
𝑖∈𝐍

𝐁⊕𝑚𝑖(𝑉)
𝑖 ,

where𝑚𝑖(𝑉) is the multiplicity of 𝑖 as a Hodge–Tate weight of 𝑉.

2. (a) There is an isomorphism of discrete 𝐺𝐾-modules

Fil−𝑛 𝑡𝑉(�̅�𝑝) ⥲ Fil−𝑛 𝑡𝑉 ⊗𝐾 �̅�𝑝

(b) The module Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) is the maximal trivial torsion 𝐁𝑛-subrep-
resentation of (Fil−𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉.

(c) There is an isomorphism of torsion 𝐁+dR-representations of 𝐺𝐾

Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) ⥲ Im (Fil−𝑛 𝑡𝑉(𝐁+dR) → (Fil−𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉) .

(d) If 𝑉 is de Rham, then there exists an isomorphism of 𝐁+dR-repres-
entations of 𝐺𝐾

Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) ⥲ ⨁
𝑖∈[1,𝑛]

𝐁⊕𝑚𝑖(𝑉)
𝑖 ,

where𝑚𝑖(𝑉) is the multiplicity of 𝑖 as a Hodge–Tate weight of 𝑉.

Proof. The first three points in both cases are due to Fontaine [18, Proposi-
tion 8.1]. For last points under the assumption that 𝑉 is de Rham, the state-
ment for ̂𝑡𝑉(�̅�𝑝) is [29, Corollary 3.3.4], while the statement for Fil

𝑛 ̂𝑡𝑉(�̅�𝑝)
is proved similarly. ∎
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We fix an integer 𝑛 ≥ 1. We set 𝐸e(𝑉) = 𝐁e ⊗𝐐𝑝 𝑉, and 𝐸𝑛(𝑉) =
Fil−𝑛 𝐁e ⊗𝐐𝑝 𝑉. The tensor product of 𝑉 with the fundamental exact se-
quences (2.2.2) and (2.2.3) yields a commutative diagram with exact rows

0 𝑉 𝐸𝑒(𝑉) (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉 0

0 𝑉 𝐸𝑛(𝑉) (Fil−𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉 0.

←→ ←→ ← → ← →

←→ ←→

⇐

⇐

←→

← →

←→

← →

(6.4.1)
Let 𝐸+(𝑉) be the reciprocal image of ̂𝑡𝑉(�̅�𝑝) in 𝐸e(𝑉), and let 𝐸𝑛+(𝑉) be

the reciprocal image of Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) in 𝐸𝑛(𝑉). The diagram (6.4.1) induces
a commutative diagram with exact rows

0 𝑉 𝐸+(𝑉) ̂𝑡𝑉(�̅�𝑝) 0

0 𝑉 𝐸𝑛+(𝑉) Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) 0.

←→ ←→ ← → ← →

←→ ←→

⇐ ⇐

←→
← →

←→

← → (6.4.2)

Proposition 6.4.2 (Fontaine). The topological𝐺𝐾-modules𝐸+(𝑉) and𝐸𝑛+(𝑉)
are almost 𝐂𝑝-representations of 𝐺𝐾. Moreover, they satisfy the following
universal properties.

1. The almost 𝐂𝑝-representation 𝐸+(𝑉) is the universal extension of 𝑉 by a
trivial torsion 𝐁+dR-representation inℬ(𝐺𝐾).

2. The almost 𝐂𝑝-representation 𝐸𝑛+(𝑉) is the universal extension of 𝑉 by a
trivial 𝐁𝑛-representation inℬ(𝐺𝐾).

Lemma 6.4.3. Assume that 𝑉 is de Rham.

1. If the Hodge–Tate weights of 𝑉 are all ≤ 0, then

𝑉 = 𝐸𝑛+(𝑉) = 𝐸+(𝑉).

2. If the Hodge–Tate weights of 𝑉 are all ≤ 𝑛, then

𝐸𝑛+(𝑉) = 𝐸+(𝑉).

Proof. Both statements follow from Proposition 6.4.1. ∎

Proposition 6.4.4. If 𝑉 is de Rham, then there exists an isomorphism of short
exact sequences of almost 𝐂𝑝-representations of 𝐺𝐾

0 𝑉 𝐸𝑛+(𝑉) Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) 0

0 H0(𝑋FF, ℰ(𝑉)) H0(𝑋FF, ℰ𝑛+(𝑉)) H0(𝑋FF, ℱ𝑛
+ (𝑉)) 0.

← → ← →

←→ ∼

← →

←→ ∼

← →

←→ ∼
←→ ←→ ←→ ←→
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Proof. The statement is proved similarly to [29, Proposition 3.3.1 andLemma3.3.2].
By Lemma 5.3.1, the Harder–Narasimhan slopes of the sheaves

0 → ℰ(𝑉) → ℰ𝑛+(𝑉) → ℱ𝑛
+ (𝑉) → 0

are all ≥ 0. Thus, by Proposition 3.2.1, there exists a commutative diagram
of topological 𝐺𝐾-modules

0 𝑉 𝐸e(𝑉) (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉 0

0 H0(𝑋FF, ℰ(𝑉)) H0(𝑋FF, ℰ𝑛+(𝑉)) H0(𝑋FF, ℱ𝑛
+ (𝑉)) 0.

← → ← → ← → ←→

←→ ←→

← →∼

←→

← →

←→

← →

where the bottom rows is a short exact sequence of almost𝐂𝑝-representations
of 𝐺𝐾 by Theorem 3.4.2. Since 𝑉 is de Rham, there are isomorphisms of
torsion 𝐁+dR-representations

Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) ⥲ Im (Fil−𝑛 𝑡𝑉(𝐁+dR) → (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉)

⥲ Im (𝐁+dR ⊗𝐾 (Fil
−𝑛DdR(𝑉)/Fil

0DdR(𝑉)) → (𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉)

⥲ Im (
𝐁+dR ⊗𝐾 Fil

−𝑛DdR(𝑉)
𝐁+dR ⊗𝐾 Fil

0DdR(𝑉)
→

𝐁dR ⊗𝐐𝑝 𝑉

𝐁+dR ⊗𝐐𝑝 𝑉
)

⥲
𝐁+dR ⊗𝐐𝑝 𝑉 + 𝐁+dR ⊗𝐾 Fil

−𝑛DdR(𝑉)

𝐁+dR ⊗𝐐𝑝 𝑉

⥲ H0(𝑋FF, ℱ𝑛
+ (𝑉)),

where the first isomorphism is from Proposition 6.4.1 and the last one from
Theorem 3.4.2. ∎

The combination of Proposition 6.4.4 and Proposition 5.3.4 yields the
following.

Corollary 6.4.5. If 𝑉 is de Rham, then there is a natural isomorphism of
𝑝-adic representation of 𝐺𝐾

𝐸𝑛+(𝑉)0 ⥲ 𝑉≤0,>𝑛.

Let 𝑇 be a 𝐺𝐾-stable lattice in 𝑉. We set 𝐸+(𝑉/𝑇) = 𝐸+(𝑉)/𝑇 and
𝐸𝑛+(𝑉/𝑇) = 𝐸𝑛+(𝑉)/𝑇, and thus the diagram (6.4.2) induces a commutat-
ive diagram of topological 𝐺𝐾-modules with exact rows

0 𝑉/𝑇 𝐸+(𝑉/𝑇) ̂𝑡𝑉(�̅�𝑝) 0

0 𝑉/𝑇 𝐸𝑛+(𝑉/𝑇) Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) 0.

←→ ←→ ← → ← →

←→ ←→

⇐ ⇐
←→

← →

←→

← → (6.4.3)

We set 𝐸𝛿(𝑉/𝑇) = (𝐸+(𝑉/𝑇))𝛿 and 𝐸𝑛𝛿 (𝑉/𝑇) = (𝐸𝑛+(𝑉/𝑇))𝛿, and thus, by
Lemma 4.2.2, the diagram (6.4.3) induces a commutative diagram of discrete
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𝐺𝐾-modules with exact rows

0 𝑉/𝑇 𝐸𝛿(𝑉/𝑇) 𝑡𝑉(�̅�𝑝) 0

0 𝑉/𝑇 𝐸𝑛𝛿 (𝑉/𝑇) Fil−𝑛 𝑡𝑉(�̅�𝑝) 0

←→ ←→ ← → ← →

←→ ←→

⇐ ⇐

←→

← →

←→

← → (6.4.4)

Remark 6.4.6. Fontaine has defined the group of points 𝐸disc(𝑉/𝑇) associated
with 𝑉/𝑇 as the image of 𝐸𝛿(𝑉/𝑇) in 𝐸+(𝑉/𝑇). As in the article [29], we use
different notation to highlight the different topologies: 𝐸𝛿(𝑉/𝑇) is a discrete
𝐺𝐾-module, while 𝐸disc(𝑉/𝑇) is endowed with the subspace topology from
𝐸+(𝑉/𝑇).

Proposition 6.4.7. Let 𝐿 be an algebraic extension of 𝐾. The commutative
diagram of discrete𝐺𝐾-modules (6.4.4) induces a commutative diagramwhose
rows are exact

0 H1
𝑒(𝐿, 𝑉/𝑇) H1(𝐿, 𝑉/𝑇) H1(𝐿, 𝐸𝛿(𝑉/𝑇)) 0

0 Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) H1(𝐿, 𝑉/𝑇) H1(𝐿, 𝐸𝑛𝛿 (𝑉/𝑇)) 0

← → ← → ←→ ←→

←→ ←→

← →

←→

⇐ ⇐

←→

← →

Proof. The statement for 𝐸𝛿(𝑉/𝑇) is [29, Proposition 3.2.1], while the state-
ment for 𝐸𝑛𝛿 (𝑉/𝑇) is proved similarly. If 𝐾

′ is a finite extension of 𝐾, then
the cohomology of 𝐾′ of the diagram

0 𝑉 𝐸𝑛(𝑉) (Fil−𝑛 𝐁dR/𝐁+dR) ⊗𝐐𝑝 𝑉 0

0 𝑉 𝐸𝑛+(𝑉) Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) 0

←→ ←→ ←→ ←→

←→ ←→

⇐

⇐

← →

← →

← →

← →

induces the commutative diagram with exact rows

0 𝑉𝐺𝐾′ Fil−𝑛Dcris,𝐾′(𝑉)𝜑=1 Fil−𝑛 𝑡𝑉(𝐾′) H1(𝐾′, 𝑉)

0 𝑉𝐺𝐾′ 𝐸𝑛+(𝑉)𝐺𝐾′ Fil−𝑛 𝑡𝑉(𝐾′) H1(𝐾′, 𝑉).

←→ ←→ ←→ ←→

←→ ← →

⇐ ⇐

← →

← →∼
←→

⇐ ⇐ ⇐ ⇐

Hence, by definition of Fil−𝑛H1
𝑒(𝐾′, 𝑉), there is an exact sequence

0 → 𝑉𝐺𝐾′ → 𝐸𝑛+(𝑉)𝐺𝐾′ → Fil−𝑛 𝑡𝑉(𝐾′) → Fil−𝑛H1
𝑒(𝐾′, 𝑉) → 0. (6.4.5)

The commutative diagram

0 𝑉 𝐸𝑛+(𝑉) Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) 0

0 𝑉/𝑇 𝐸𝑛+(𝑉/𝑇) Fil−𝑛 ̂𝑡𝑉(�̅�𝑝) 0

←→ ← →

←→

←→

←→

←→

⇐⇐

←→ ←→ ←→ ←→
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induces the commutative diagram with exact rows

0 𝑉𝐺𝐾′ 𝐸𝑛+(𝑉)𝐺𝐾′ Fil−𝑛 𝑡𝑉(𝐾′) H1(𝐾′, 𝑉)

0 (𝑉/𝑇)𝐺𝐾′ 𝐸𝑛+(𝑉/𝑇)𝐺𝐾′ Fil−𝑛 𝑡𝑉(𝐾′) H1(𝐾′, 𝑉/𝑇).

← → ← →

←→

←→

←→

← →

⇐⇐ ←→

←→ ←→ ←→ ←→
(6.4.6)

Hence, by definition of Fil−𝑛H1
𝑒(𝐾′, 𝑉/𝑇), the exact sequence (6.4.5), and

the commutativity of the diagram (6.4.6), there is an exact sequence

0 → (𝑉/𝑇)𝐺𝐾′ → 𝐸𝑛+(𝑉/𝑇)𝐺𝐾′ → Fil−𝑛 𝑡𝑉(𝐾′) → Fil−𝑛H1
𝑒(𝐾′, 𝑉/𝑇) → 0.

(6.4.7)
Therefore, by the exact sequence (6.4.7), the short exact sequence of discrete
𝐺𝐾-modules

0 → 𝑉/𝑇 → 𝐸𝑛𝛿 (𝑉/𝑇) → Fil−𝑛 𝑡𝑉(�̅�𝑝) → 0

induces a short exact sequence

0 → Fil−𝑛H1
𝑒(𝐾′, 𝑉/𝑇) → H1(𝐾′, 𝑉/𝑇) → H1(𝐾′, 𝐸𝑛𝛿 (𝑉/𝑇)) → 0. (6.4.8)

By definition of Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) and by continuity of Galois cohomology

with coefficients in discrete modules [32, I §2.2 Proposition 8], the limit of
the short exact sequences (6.4.8) over the finite extensions 𝐾′ of 𝐾 contained
in 𝐿 with transition morphisms the restriction maps yields

0 → Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) → H1(𝐿, 𝑉/𝑇) → H1(𝐿, 𝐸𝑛𝛿 (𝑉/𝑇)) → 0.

∎

The combination of Proposition 6.4.7 and Lemma 6.4.3 yields the follow-
ing.

Corollary 6.4.8. Let 𝐿 be an algebraic extension of 𝐾. Assume that 𝑉 is de
Rham.

1. If the Hodge–Tate weights of 𝑉 are all ≤ 0, then

H1
𝑒(𝐿, 𝑉/𝑇) = 0.

2. If the Hodge–Tate weights of 𝑉 are all ≤ 𝑛, then

Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) = H1

𝑒(𝐿, 𝑉/𝑇).

6.5 Bloch–Kato groups and Galois theory of 𝐁+
dR

Let 𝑉 be a 𝑝-adic representation of 𝐺𝐾. Let 𝐿 be an algebraic extension of 𝐾.
If 𝑉 is de Rham and if 𝑛 ≥ 1 is an integer, then we denote by 𝑇≤0,>𝑛 the

image of 𝑇 in 𝑉≤0,>𝑛, and the quotient map 𝑉/𝑇 → 𝑉≤0,>𝑛/𝑇≤0,>𝑛 induces
a morphism

𝜋0,𝑛 ∶ H1(𝐿, 𝑉/𝑇) → H1(𝐿, 𝑉≤0,>𝑛/𝑇≤0,>𝑛).
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Note that if the Hodge–Tate weights of 𝑉 are all≤ 𝑛, then the representation
𝑉≤0,>𝑛 is the maximal quotient representation of 𝑉 whose Hodge–Tate
weights are all ≤ 0, and we then simply denote the representation 𝑉≤0,>𝑛

by 𝑉≤0, the lattice 𝑇≤0,>𝑛 by 𝑇≤0, and the map 𝜋0,𝑛 by

𝜋0 ∶ H1(𝐿, 𝑉/𝑇) → H1(𝐿, 𝑉≤0/𝑇≤0).

Theorem6.5.1. Let𝑛 ≥ 1 be an integer. If 𝑉 is de Rhamand if �̂� is a perfectoid
field such that 𝐿 is dense in 𝐁𝐺𝐿

𝑛 , then the map 𝜋0,𝑛 induces an isomorphism

H1(𝐿, 𝑉/𝑇)/Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) ⥲ H1(𝐿, 𝑉≤0,>𝑛/𝑇≤0,>𝑛).

Proof. By Proposition 6.4.7, there is an isomorphism

H1(𝐿, 𝑉/𝑇)/Fil−𝑛H1
𝑒(𝐿, 𝑉/𝑇) ⥲ H1(𝐿, 𝐸𝑛𝛿 (𝑉/𝑇)).

Since 𝐿 is dense in 𝐁𝐺𝐿
𝑛 , by Proposition 6.4.1, (Fil−𝑛 𝑡𝑉(�̅�𝑝))𝐺𝐿 is dense in

(Fil−𝑛 ̂𝑡𝑉(�̅�𝑝))𝐺𝐿. Therefore, by Corollary 4.2.5 and Corollary 6.4.5, there are
isomorphisms

H1(𝐿, 𝐸𝑛𝛿 (𝑉/𝑇)) ⥲ H1(𝐿, 𝐸𝑛+(𝑉/𝑇)) ⥲ H1(𝐿, 𝑉≤0,>𝑛/𝑇≤0,>𝑛).

∎

Corollary 6.5.2. Let 𝑛 ≥ 1 be an integer. Assume that 𝑉 is de Rham and that
�̂� is a perfectoid field such that 𝐿 is dense in 𝐁𝐺𝐿

𝑛 .

1. If the quotient representation 𝑉≤0,>𝑛 is trivial, then

H1
𝑒(𝐿, 𝑉/𝑇) = H1(𝐿, 𝑉/𝑇).

2. If the Hodge–Tate weights of 𝑉 are all ≤ 𝑛, then the map 𝜋0 induces an
isomorphism

H1(𝐿, 𝑉/𝑇)/H1
𝑒(𝐿, 𝑉/𝑇) ⥲ H1(𝐿, 𝑉≤0/𝑇≤0).

Proof. The first statement follows immediately from Theorem 6.5.1. The
second statement follows from Theorem 6.5.1 and Corollary 6.4.8. ∎
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